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Introduction and Background

A perfect number is a number that is equal to the sum of its proper divisors.

For example, 6 is a perfect number because its proper divisors are 1, 2, and

3 and 6 = 1 + 2 + 3. A non-example of a perfect number is 8, whose proper

factors sum to 1 + 2 + 4 = 7 , 8. The next smallest perfect number after 6 is

28 = 1+2+4+7+14 and after 28 we have 496. There are 52 known perfect

numbers. The largest one was discovered in October 2024 and has more than

82 million digits ([10]).

All 52 known perfect numbers are even. Given this observation, it is natu-

ral to ask, do odd perfect numbers exist? Indeed, many people have asked this

question before. Number theorists have been wondering whether or not odd

perfect numbers exist for more than 2,000 years and yet we remain unable to

rigorously answer the problem. Our understanding of odd perfect numbers

provides a stark contrast to how well-studied and formulated even perfect

numbers are. Every few years increased computational power partnered with

our understanding of even perfects allows us to find a new even perfect num-

ber. The more we search for odd perfect numbers, the more elusive they

seem.

We will be talking about the odd perfect number problem and a smorgas-

bord of related problems, such as multiply perfect numbers, super perfect

numbers, and primitive abundant numbers in our literature review. Before

we do so, we will formally define all the terms and functions we need in the

Theoretical Frameworks section, which can be used as a reference for these

terms as we proceed through the rest of the paper. Our discussion will cul-

minate in my original work with non-divisors of odd perfect numbers and

determining the possible forms of multiply perfect numbers.
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Theoretical Frameworks

Before we can discuss important theorems, conjectures, and new findings

surrounding odd multiply perfect numbers we need to establish the notation

that we will be using and define important terms using formal mathematics.

The Theoretical Frameworks section serves that purpose and acts as a place

of reference for definitions as we get into the Literature Review and Original

Work sections.

First, we will define the σ-function and the abundancy index as these

two functions simplify working with multiply perfect numbers and have nice

properties.

Definition 1 (The σ-function) Define the function σ such that σ(n) is equal

to the sum of all of the divisors of n, including 1 and n itself, where n ∈ N.

As an example of the sigma function, σ(8) = 1 + 2 + 4 + 8 = 15, because

the divisors of 8 are 1, 2, 4, and 8. As an additional example, σ(12) =

1 + 2 + 3 + 4 + 6 + 12 = 28.

Definition 2 (The Abundancy Index) Define the function I such that I(n) =

σn
n , where n ∈ N. Note that I(n) is called ‘the abundancy index of n.’

As an example of the abundancy index in action, I(8) = σ(8)
8 =

15
8 = 1.875.

We now define gcd aka the greatest common divisor function.

Definition 3 (Greatest Common Divisor) Let a, b ∈ N. Then the greatest

common divisor of a and b, written as gcd(a, b), is the largest integer that

divides both a and b. Furthermore, a and b are called relatively prime if and

only if gcd(a, b) = 1.

Observe that gcd(12, 16) = 4 since the largest integer that divides 12 and 16

is 4. Also, gcd(9, 20) = 1 since 9 and 20 have no common divisors aside
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from 1, meaning that 9 and 20 are relatively prime. Let us also define what it

means for a number to be prime.

Definition 4 (Prime) A prime number p ∈ N has exactly two distinct divi-

sors, which are 1 and p.

Note that 1 is not a prime number because 1 has exactly one distinct divisor

(which is itself). The smallest prime number is 2 and there are infinitely many

prime numbers as stated in Theorem 1. Theorem 1 was first proved by Euclid

and is well known.

Theorem 1 There are infinitely many prime numbers.

Lemmas 1, 2, and 3 give some useful characteristics of σ. Lemma 1 fol-

lows directly from the definition of the σ-function and the behavior of primes

raised to a power.

Lemma 1 (Euler and the σ-function Part 1) If p is a prime number and

k ∈ N, then σ(pk) = 1 + p + p2 + · · · + pk.

Lemma 2 makes use of the greatest common divisor function which we de-

fined earlier.

Lemma 2 (Euler and the σ-function Part 2) If a, b ∈ N with gcd(a, b) = 1,

then σ(a ·b) = σ(a) ·σ(b). This means that σ has the multiplicative property.

Lemma 3 follows directly from the formula for geometric series, which can

be found in any elementary number theory textbook such as [3].

Lemma 3 (Extension of Lemma 1) If p is a prime number and k ∈ N, then

σ(pk) = pk+1−1
p−1 .

We are going to be heavily discussing multiply perfect numbers, so let’s

define them in Definition 5.
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Definition 5 (Multiply Perfect Numbers) Let M ∈ N. Then M is multiply

perfect if and only if I(M) ∈ Z. Additionally, M is called n-perfect for n ∈ N

if and only if σ(M) = n · M ⇔ I(M) = n.

Note that 2-perfect numbers are commonly referred to as simply ‘perfect’

and that 3-perfect numbers are commonly called ‘triperfect.’

We will make reference to abundant and deficient numbers as defined in

Definition 6. The definition of the abundancy index is closely tied to Defini-

tion 6.

Definition 6 (Abundant and Deficient) A number n is called abundant if

I(n) > 2 and is called deficient if I(n) < 2.

An extension of abundant numbers is primitive abundant numbers, defined in

Definition 7.

Definition 7 (Primitive Abundant Numbers) A number n is called a prim-

itive abundant number if it is non-deficient and if it is not a multiple of any

smaller non-deficient number.

The set of perfect numbers is a subset of the set of primitive abundant num-

bers.

Lemma 4 is logically equivalent to a theorem that appears in [7] and will

be important to us later.

Lemma 4 For all m, n ∈ N with m , 1, I(mn) > I(n).

Now we will formally define divides, double bar divides (which is an ex-

tension of divides), and modular arithmetic.

Definition 8 (Divides) Given a, b ∈ Z, we write a | b or say ‘a divides b’ if

and only if there exists k ∈ Z such that a · k = b. Otherwise, we write a ∤ b.
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As an example of divides, we say 4 | 36 since 9 ∈ Z and 4 · 9 = 36 however

4 ∤ 26 since there is no k ∈ Z such that 4 · k = 26.

Definition 9 (Double Bar Divides) Given a, b ∈ Z, we write a || b if and

only if a | b and gcd(a, b
a) = 1.

As an example of double bar divides, 10 || 30 since 10 | 30 and 30
10 = 3 is

relatively prime to 10.

Definition 10 (Mod) We write n ≡ r mod q and say ‘n is congruent to r

mod q’ for n, q, r ∈ Z if and only if q | (n − r) or, equivalently, there exists

k ∈ Z such that a = q · k + r.

Modular arithmetic is far simpler than it sounds when defined formally. As

an example 5 ≡ 1 mod 4 since 4 | (5−1) but 7 . 2 mod 4 since 4 ∤ (7−2).

Another set of numbers that will come up in our conversation is the trian-

gular numbers, which are defined in Definition 11.

Definition 11 (Triangular numbers) A triangular number is equal to 1+2+

3 + ... + n for some n in the natural numbers.

The triangular numbers are 1, 1+2=3, 1+2+3=6, 1+2+3+4=10, 1+2+3+4+5=15,

1+2+3+4+5+6=21, etc.

While lim sup does not play a huge role, it will come up later in our dis-

cussion of the σ function. Note that a sequence is simply an ordered, infinite

set of numbers. For example, the triangular numbers (1,3,6,10,15,...) is a

sequence.

Definition 12 Given a sequence (an) = (a1, a2, a3, ...) that is bounded above,

lim sup an is the smallest upper bound of (an).

Full understanding of lim sup is outside of the scope of our analysis.
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There will be some more definitions and lemmas that come up later, but

we now have the necessary items in our toolkit to proceed into our literature

review.
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Literature Review

Most number theorists who have studied the odd perfect number problem

generally come to the conjecture that odd perfect numbers cannot exist. As

John Voight, professor of mathematics at Dartmouth College, said “proving

that something exists is easy if you can find just one example, but proving that

something does not exist can be really hard” ([18]). James Joseph Sylvester,

who in 1888 proved that an odd perfect number cannot be divisible by 105

and that an odd perfect number must have at least three distinct prime factors,

reflected “the existence of [an odd perfect number]–its escape, so to say, from

the complex web of conditions which hem it in on all sides–would be little

short of a miracle” ([18]).

The majority of theorems regarding odd perfect numbers follow the struc-

ture of ‘If an odd perfect number exists, then [conclusion].’ To prove that

an odd perfect number does not exist it would suffice to prove two such the-

orems with contradictory conclusions hold. Most of the theorems that have

been proven pertaining to odd perfect numbers were written with the hope

of finding a contradiction. In the 2,000 years that odd perfect numbers have

been recognized and studied, mathematicians have established “an extraordi-

nary list of restrictions,” but no contradiction has yet been reached ([18]).

If an odd perfect number exists then it is larger than 101500 ([20]). For

comparison, there are only about 1082 atoms in the observable universe. An

odd perfect number would have to be an incredibly large number. The lower

bound for odd perfect numbers is constantly being improved as increased

computational power can be applied to the problem. A paper published in

1949 gives that the lower bound for odd perfect numbers is 2,000,000,000 or

2 · 109 showing just how much the bound has been improved in the last 75
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years ([1]). Further, the largest prime power in an OPN’s prime decomposi-

tion is greater than 1062 and it must have at least 101 prime factors ([20]).

Spoof Perfect Numbers

The set of odd perfect numbers is a subset of the set of odd ‘spoof’ perfect

numbers. A spoof perfect number is a number that would be perfect if you

ignored one shortcoming. For example, the first spoof perfect number was

discovered by Descartes in 1638 and is 198, 585, 576, 189 = 32 · 72 · 112 ·

132 ·22, 0211 ([18]). Descartes’ number would be a perfect number under the

multiplicative property of the sigma function if only 22,021 were prime. The

second spoof odd perfect number was discovered 361 years later in 1999 by

John Voight and is −22, 017, 975, 903 = 34 · 72 · 112 · 192 · (−127)1, which

would be perfect if we pretend that −127 isn’t negative.

Voight, along with a team of other math professors and students at BYU,

completed a study of spoof perfect numbers in 2019. The team used 20 paral-

lel processors over the course of three years to find all possible spoof perfect

numbers with factorizations of six or fewer bases ([18]). They found a to-

tal of 21 spoofs (including Descartes’ and Voight’s original two examples)

and an additional two spoofs with factorizations of seven bases ([18]). The

BYU team also found that there are infinitely many spoofs, but there are only

a finite number of them for any fixed number of bases. In a paper titled

“Spoof Odd Perfect Numbers” published in 2014 ([8]), the author, Samuel J.

Dittmer, thanked the BYU Mathematics Department for “support of this re-

search,” showing the significant role that this team has played in the research

surronding spoof perfect numbers.

Dittmer defines spoof perfect numbers slightly more specifically than we

have. Definition 13 is logically equivalent to Dittmer’s definition of spoof
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perfect numbers.

Definition 13 (Dittmer’s definition of spoof perfect numbers) A spoof per-

fect number S can be written as S = pa1
1 · p

a2
2 · ... · p

ak
k where k ∈ N and

2S =
pa1+1

1 − 1
p1 − 1

·
pa2+1

2 − 1
p2 − 1

· ... ·
pak+1

k − 1
pk − 1

.

We refer to the pi as ‘quasi-primes.’

Notice that Dittmer’s definition compared to the definition of a perfect num-

ber only relaxes the fact that every base in the factorization of the number

must be a distinct prime. Dittmer calls the bases ‘quasi-primes’ because they

may or may not be primes but, regardless, they are treated like primes un-

der the sigma function in order to produce a spoof perfect number (note that

σ(pn) = pn+1−1
p−1 when p is prime by Lemma 3). Unlike Voight, Dittmer does

not include negative spoofs in his definition.

Using his definition of spoof perfect numbers, Dittmer proved Theorem 2

([8]).

Theorem 2 The only spoof odd perfect number (defined under Definition 13)

with less than seven quasi-prime factors is Descartes’ example, 32 · 72 · 112 ·

132 · 220211.

Dittmer also found an algorithm for generating odd spoofs and he showed

that there are infinitely many even spoofs. In [8], he gives three infinite fam-

ilies of even spoof perfect numbers which we give as Theorem 3.

Theorem 3 For all n > 1 and α ≥ 1, the following are even spoof perfect
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numbers.

2n−1(2n − 1)1 (1)

n1(n + 1)1...(2n − 1)1 (2)

nα ·
(
nα+1 − 1

n − 1

)1

·

(
nα+1 − 1

n − 1
+ 1

)1

... (2 · nα − 1)1 (3)

Notice that, with reference to Theorem 16, that the set of all even perfect

numbers is a subset of the set of numbers of the form given by equation .

Since the set of odd perfect numbers is a subset of the set of odd spoofs,

any property that is proven to hold true for odd spoofs must also hold for

odd perfects. In this way Voight, the BYU team, and Dittmer successfully

tightened the net on the odd perfect number problem.

Primitive Abundant Numbers

The set of perfect numbers is a subset of the set of primitive abundant num-

bers, so these two sets share quite a few characteristics. Per Definition 7,

a primitive abundant number is a non-deficient number that is not divisible

by any other non-deficient numbers. The smallest odd primitive abundant

number is 945 and the smallest even primitive abundant number is 20. A

list of other odd primitive abundant numbers is given in [6]. By Theorem 4,

the abundancy of any multiple of a perfect number, similar to the rest of the

primitive abundant numbers, will be greater than two, or abundant.

The main result of [6] is given in Theorem 4.

Theorem 4 There is only a finite number of primitive non-deficient odd num-

bers having any given number of distinct prime factors.

Theorem 4 suggests, as Leonard Eugene Dickson points out in a corollary

in [6], there cannot be infinitely many “odd perfect numbers with any given

number of distinct prime factors.” Dickson emphasizes in the footnotes that
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Theorem 4 only applies to odd numbers since “if p is prime 2m p is non-

deficient if and only if 2m+1 > p+1,” which shows that there can be infinitely

many even primitive abundant numbers with a given number of distinct prime

factors [6].

In [23] Paul Pollack expands upon a theorem of L. E. Dickson in [6]. We

gave Dickson’s theorem as Theorem 4 and we give Pollack’s generalization

of Dickson’s theorem as Theorem 5.

Theorem 5 For each positive integer k, the number of odd perfect numbers

N where the number of distinct prime factors of N is less than or equal to k

is bounded by 4k2
.

Multiply Perfect Numbers

Yet another superset of perfect numbers is multiply perfect numbers. We

defined multiply perfect numbers in Definition 5. The smallest ten multiply

perfect numbers are 1, 6, 28, 120, 496, 672, 8128, 30240, 32760, and 523776.

Of this list, 1 is 1-perfect, 6, 28, 496, and 8128 are 2-perfect, 120, 672, and

523776 are 3-perfect, and 30240 and 32760 are 4-perfect ([11]). Interest-

ingly, of the more than 5,000 known multiply perfect numbers the only odd

one that has been found is 1, which is the only 1-perfect number ([11]).

Theorem 6 (The Only 1-Perfect) The only 1-perfect number is 1.

Not only are odd 2-perfect numbers incredibly elusive, but odd multiply per-

fect numbers aside from 1 are conjectured to be nonexistent as well, leading

us to Conjecture 1 which is common among number theorists.

Conjecture 1 The only odd multiply perfect number is 1.

The behavior of multiply perfect numbers, and specifically 3-perfect num-

bers, has direct implications on the odd perfect number problem. Theorem 7
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is well-known, easy to prove, and given in [4].

Theorem 7 An odd number N is 2-perfect if and only if 2N is 3-perfect.

Not too much effort is required to generalize Theorem 7 into Theorem 8.

Theorem 8 Given an n-perfect number M, if n ∤ M then nM is aσ(n)-perfect

number.

Unlike Theorem 7, there are some known examples of Theorem 8 in ac-

tion. For example, 459818240 and 51001180160 are two examples of 3-

perfect numbers that are not divisible by 3, meaning that 3 · 459818240 =

1379454720 and 3 · 51001180160 = 153003540480 are both 4-perfect num-

bers since σ(3) = 3 + 1 = 4.

Interestingly, [16] gives somewhat of a reverse perspective of Theorem 7

as Theorem 9 where if we find a deficient number that satisfies a certain

condition we can multiply it with 5 to get an odd perfect number.

Theorem 9 If I(n) = 5
3 for some n ∈ N, then 5n is an odd 2-perfect number.

Note, as Judy A. Holdener does in [16] that Theorem 9 does not give a re-

striction for the existence of odd perfect numbers but rather provides a way

to generate them. A related restriction for the existence of an odd perfect

number that was proven by Holdener in [16] is given as Theorem 10.

Theorem 10 There exists an odd perfect number if and only if there exists

p, n, α ∈ N such that p ≡ α ≡ 1 mod 4 where p is a prime, p ∤ n, and

I(n) =
2pα(p − 1)

pα+1 − 1
.

Holdener’s theorem stands out among the many other proofs surrounding odd

perfect numbers because, similar to Theorem 7, it successfully makes the

existence of an odd perfect number dependent upon the existence of another

number with special properties.
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Another interesting note on Theorem 7 is the apparent finiteness of n-

perfect numbers for each n > 2. Conjecture 2 is common in the literature

behind multiply perfect numbers.

Conjecture 2 There are infinitely many 2-perfect numbers but there are finitely

many n-perfect numbers for each n > 2.

There are six known 3-perfect numbers and these are generally believed to

be all of the triperfects that exist. All six of the triperfects have been known

since 1643 ([4]). A way to find all six of the triperfects is to use guess and

check by considering numbers of the form 2aM where M is odd and factoring

σ(2a) = 2a+1 − 1 for a ≤ 14 as suggested in [4]. The six triperfects are

120 = 23 · 3 · 5

672 = 25 · 3 · 7

523776 = 29 · 3 · 11 · 31

459818240 = 28 · 5 · 7 · 19 · 37 · 73

1476304896 = 213 · 3 · 11 · 43 · 127

51001180160 = 214 · 5 · 7 · 19 · 31 · 151.

The existence of an odd 2-perfect number suggests that a seventh triperfect

number T exists such that 2 || T . The smallest power of 2 that divides any of

the known six triperfect numbers is 23 = 8.

Forms of Perfect Numbers

A common approach to the odd perfect number problem has been to write

theorems regarding the form of an OPN or some part of it. For example, [15]

gives a theorem from French mathematician Jacques Touchard, which we

give as Theorem 11.
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Theorem 11 Any odd perfect number must have the form 12m+1 or 36m+9

for some m ∈ N.

It has been well-known for a long time that an odd perfect number must be of

the form 4m+ 1, which follows directly from Theorem 13. Another result on

the form of an odd perfect number is given in Theorem 12 which is from [25].

Theorem 12 There are no odd perfect numbers of the form aa where a ∈ N.

I have done some of my own research pertaining to forms of odd multiply

perfect numbers which we will discuss in the Original Work section of this

thesis.

Euler proved the equivalent of Theorem 13 as given in [9].

Theorem 13 If an odd perfect number N exists then it is of the form N =

pa · s2 where p ≡ a ≡ 1 mod 4, p is prime, and gcd(p, s) = 1.

In this representation of N’s form, p is commonly referred to as the ‘special

prime’, as it is in [4]. For my research of studying the forms of odd multiply

perfect numbers aside from 2-perfects, I generally refer to any prime that is

raised to an odd power in the prime decomposition of an odd multiply perfect

number as a ‘special prime.’

There are a lot of obscure results for odd perfect numbers that have to do

with placing bounds on the largest, smallest, second largest, etc. primes in

the prime decomposition of an odd perfect number. For example, Theorem 4

in [4] is given as Theorem 14.

Theorem 14 If p is the special prime in an odd perfect number, then σ(p +

1) ≤ 3(p − 1).

Further, the main theorem in [12], which we give as Theorem 15, pertains to

the exponents of an odd perfect number and its smallest prime.
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Theorem 15 Let N be an odd perfect number such that if pa || N and p is

not the special prime then either 3 | (a + 1) or 5 | (a + 1). The smallest prime

factor of N belongs to the range 108 < p < 101000.

While they are worth noting, I doubt that theorems such as Theorems 14

and 15 will have much weight in the final solution as to whether or not an odd

perfect number exists. As William Dunham reflects in [9] on the result that

“the third largest prime factor of an odd perfect number of an odd perfect

number must exceed one hundred,” this result “is especially bizarre, for it

tells us something specific about the third largest factor of what could well

be a nonexistent entity. This is a bit like knowing the tooth fairy’s cousin’s

middle name.”

While the form of odd perfect numbers is often described using modular-

ities (which is defined in Definition 10), the form for even perfect numbers

is comparably tight and well-established. Euclid proved that if 2p − 1 is

prime then 2p−1(2p − 1) is an even perfect number, Euler proved that all even

perfect numbers are of Euclid’s form, and Italian mathematician Cataldi ob-

served that if p is not prime then 2p − 1 is not prime giving us Theorem 16

from [7].

Theorem 16 All even perfect numbers are equal to 2p−1(2p − 1) for some

prime p where 2p − 1 is prime.

A prime of the form 2p−1 is named a Mersenne prime after Marin Mersenne,

who, alongside other famous mathematicians such as Fermat, St. Croix,

Frenicle, and Descartes, studied multiply perfect numbers in the mid-17th

century ([7]). By Theorem 16 there is exactly one even perfect number for

every Mersenne prime and vice versa.

Comparing the form of an odd 2-perfect number given in Theorem 13
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with that of an even 2-perfect number given in Theorem 16 highlights just

how well understood even perfects are vs. odd perfects. For even perfects

we have an equation and we know exactly when that equation holds. For

odd perfects we have a form that is loosely defined by the modularities of a

special prime and its prime power.

Mersenne Primes

There are currently 52 known even perfect numbers. The largest one was dis-

covered in October 2024 by Luke Durant with the Great Internet Mersenne

Prime Search (GIMPS) and has upwards of 82,000,000 digits as stated in [19].

While GIMPS is more focused on finding Mersenne primes than perfect

numbers, the one-to-one relationship between them means that every new

Mersenne prime yields a new even perfect number. The 18 largest and most

recently discovered perfect numbers have been discovered by GIMPS since

1996.

Aside from their close association with perfect numbers, Mersenne primes

are special in other ways. Currently, eight of the ten largest known primes

are Mersenne primes as listed in [24]. As Ray Candlish summarizes in [2],

it has been well known for a long time that every even perfect number is a

triangular number (defined in Definition 11), which we give as Theorem 17.

Theorem 17 Every even perfect number is a triangular number.

Candlish also gives the formula for Theorem 18 in [2].

Theorem 18 Given n ∈ N, 1+ 2+ 3+ ...+ n = 1
2n(n+ 1), so every triangular

number is of this form.

Theorem 17 is incredibly easy to prove as, by observation of Theorem 16,

every even perfect number is equal to 1
22p(2p − 1) for some prime p meaning
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that n = 2p − 1 in the form for triangular numbers in Theorem 18. While the

overlap between triangular numbers and even perfect numbers is interesting,

triangular perfect numbers don’t seem to have any significant connections or

implications for odd perfect numbers or multiply perfect numbers.

Super Perfect Numbers

In addition to primitive abundant numbers, multiply perfect numbers, spoof

perfect numbers, and triangular numbers, yet another group of numbers that

shows up in our discussion is the super perfects. We define super perfects in

Definition 14.

Definition 14 (Super perfects) A positive integer n is a super perfect num-

ber if and only if σ(σ(n)) = 2n.

According to [5], “the even super perfects have been completely classified,

but it is not known if any odd super perfects exist,” showing that, once again,

even examples of these numbers are easy to find, but odd examples remain

an enigma. We get Theorem 19 from [28].

Theorem 19 An even super perfect number n is equal to 2p−1 where 2p − 1

is a Mersenne prime.

Similarly to even perfect numbers, even super perfect numbers have a one-to-

one relationship with Mersenne primes, which means that there are 52 known

super perfects.

We define a further generalization of super perfects in Definition 15, the

(m, k)-perfect numbers.

Definition 15 ((m, k)-perfect numbers) A positive integer n is an (m, k)-perfect

number if and only if σm(n) = kn.
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Wolfram’s page on (m, k)-perfects tells us that there are no even (m, 2)-perfect

numbers for m ≥ 3 in [28]. Wolfram also cites J. McCranie on his computa-

tional result that there are no (m, 2)-perfect numbers less than 4.29 · 109 for

any m ≥ 3 in [28].

A Note on Notation and Conjectures

The author of a work in mathematics is able to define notation however

they wish, however it is good practice to stick to common and universally-

recognized notation when possible. For the purposes of this thesis I have

denoted the sum of divisors function as σ and the abundancy index as I,

which is how these two functions are most often referred to in mathematical

literature. Another reasonably common way to denote both of these functions

is with the sum of positive divisors function defined in Definition 16.

Definition 16 Define the function σz for z ∈ C so that

σz(n) =
∑
d|n

dz

for n ∈ N.

Note that, given n ∈ N, σ0(n) gives the number of divisors of n, σ1 = σ,

and σ−1 = I. While the number of divisors function isn’t as relevant to our

investigation of perfect numbers and related topics, it is an important function

in number theory and it is cool to see how all three of these functions are

related. Samuel J. Dittmer makes use of this notation in [8].

In addition to notation, another area of mathematics that is allowed to be

subjective is conjectures. ‘Conjecture’ is just a fancy word for ‘guess.’ It

is best practice for mathematicians to only form conjectures that they be-

lieve to be true, but even the best guided conjectures have the potential to be

false until proven true. As an example of an untrue conjecture, the last digit
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of the even perfects was at one time believed to alternate between 6 and 8

([7]). This conjecture was based on observation of the first four even per-

fect numbers, 6, 28, 496, and 8128, which have been recognized as perfect

since at least 100 A.D. ([7]). The fifth and sixth even perfects, 33550336 and

8589869056, break this pattern, proving the conjecture false. However, it is

true and proven that every even perfect number ends in either a 6 or an 8. We

keep the potential wrongness of any statement that has not been rigorously

proven in mind as we proceed.

Notes from Dr. Vaaler

Dr. Jeff Vaaler, emeritus professor of mathematics who I met at the ONTD

2023 conference (see appendix), drew my attention to Theorem 323 in [13],

which is given here as Theorem 20.

Theorem 20 Where e = 2.71828... is Euler’s number and γ = 0.57721566...

is the Euler-Mascheroni constant, we have that

lim sup
σ(n)

n log log n
= eγ.

Full understanding of Theorem 20 and lim sup (though we defined lim sup

more formally in Definition 12) is out of the scope of this thesis paper, but it

essentially means that the constant eγ gives an upper bound for the expression

σ(n)
n log log n and eγ is smaller than any other upper bound that can be found for this

expression. Theorem 20 is intriguing and somewhat surprising as it bounds

σ, a function which on first impressions seems unpredictable and able to be

arbitrarily large.

Another theorem in [13] that caught my attention is Theorem 324, which

we give as Theorem 21.

Theorem 21 The average order of σ(n) is 1
6π

2n.
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Theorem 21 means that, as n approaches infinity, σ(n) is on average equal to

1
6π

2n. Of particular relevance is Corollary 1, which follows from Theorem 21.

Corollary 1 The average value of I(n) is π
2

6 . That is

lim
N→∞

N−1
N∑

n=1

σ(n)
n
= lim

X→∞

X∑
x=1

1
x2 = ζ(2) =

π2

6
= 1.644934067...

Corollary 1 fascinates me. The abundancy index I seems hard to predict, yet

we know what its average is across all the positive integers by Corollary 1.

Even stranger, this average value is defined in terms of π, mathematics’ most

famous irrational number. Further, ∀n ∈ N, I(n) ∈ Q so why is the average of

I an element of Q′?

Conclusion

When studying perfect numbers, multiply perfect numbers, primitive abun-

dant numbers, and super perfect numbers there is a common motif. Even ex-

amples of these numbers are easy to find a formula for or at least are plentiful

while odd ones seems sporadic or non-existent. The frustrating thing about

odd perfect numbers, multiply perfect numbers, and super perfect numbers

is that we have as of yet been unable to find any odd examples yet proving

that odd solutions to these problems do not exist seems to be an almost insur-

mountable problem. Sylvester compared the odd perfect number problem to

the ”quadrature of the circle” also known as squaring the circle ([7]). Squar-

ing the circle is a geometry problem that originally interested the ancient

Greeks, but has since been proven to be impossible to solve and has become

an analogy for an impossible problem. Regardless of whether or the the odd

perfect number problem is possible to solve, we proceed to the Original Work

section.

21



Original Work

My original work on the odd perfect number problem can largely be split into

three research categories: finding non-divisors of odd multiply perfect num-

bers, completing computations related to my study using Python code that I

wrote, and studying the forms of odd multiply perfect numbers. My work

has manifested itself as 6 presentations, 4 songs written for and performed

at my presentations, and 2 papers submitted for publication. Summaries and

descriptions of my presentations and papers can be found in the Appendices

alongside the lyrics to my songs. In this section I will be discussing the the-

orems, proofs, and conjectures that have emerged from my original work.

Generalization of Sylvester’s Proof that an Odd Perfect Number is not Divisi-
ble by 105

My research with odd perfect numbers began by looking at Sylvester’s Proof

that an odd perfect number is not divisible by 105 as given in Theorem 22

from [9].

Theorem 22 An odd perfect number is not divisible by 105.

I first encountered Theorem 22 in Winter term 2022 as part of a research

project for HNR 276, Honors Mathematics. The number 105 seemed oddly

specific to me and I asked the question, are there any other positive integers

that can be proven not to divide an odd perfect number?

It turns out that there are! To start, Theorem 23 is well-known, easy to

prove, and given in [29].

Theorem 23 Every multiple of an abundant number is abundant.

Recall that abundant numbers are defined in Definition 6. From Theorem 23

follows Corollary 2.
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Corollary 2 A perfect number is not divisible by any abundant number.

So abundant numbers are the trivial OPN non-divisors. However, 105 is not

abundant. The abundancy of 105 = 3 · 5 · 7 is I(105) = σ(3)·σ(5)·σ(7)
3·5·7 = 4·6·8

3·5·7 =

64
35 ≈ 1.82857 < 2. In my research I sought to find other non-abundant non-

divisors of odd perfect numbers.

I completed an independent study during Spring 2022 to continue my re-

search. As part of the independent study I wrote [29]. At the end of the

independent study, I presented at Western Oregon University’s Academic Ex-

cellence Showcase and submitted my paper for consideration by the Pi Mu

Epsilon Journal. At the time that I presented on my research I had discovered

17 non-abundant OPN non-divisors aside from 105. By the time I submitted

my paper, I had found a total of 109 non-divisors aside from 105. My paper

was fittingly called, “Generalization of Sylvester’s Proof that an Odd Perfect

Number is not Divisible by 105.” In [29], I proved that an odd perfect number

cannot be divisible by 2145 (the smallest non-divisor aside from 105) as an

example of my generalization. Here I will prove Theorem 24 as an example

because 111,111 is my favorite non-divisor that I found.

Theorem 24 An odd perfect number is not divisible by 111,111.

Proof: We proceed by way of contradiction. Assume that N is an odd perfect

number and 111111 | N. Then, the prime factorization of N will be of the

form N = 3k1 · 7k2 · 11k3 · 13k4 · 37k5 · pk6
6 · ... · p

kn
n where every base is a distinct
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prime and every ki is greater than 0. Observe, by Lemma 2,

I(N) =
σ(N)

N

=
σ(3k1)

3k1
·
σ(7k2)

7k2
·

11k3

11k3
·
σ(13k4)

13k4
·
σ(37k5)

37k5
·
σ(p6

k6)
p6

k6
...
σ(pn

kn)
pn

kn

=

(
1 +

1
3
+ ... +

1
3k1

)
·

(
1 +

1
7
+ ... +

1
7k2

)
·

(
1 +

1
11
+ ... +

1
11k3

)
·

(
1 +

1
13
+ ... +

1
13k4

)
·

(
1 +

1
37
+ ... +

1
37k5

)
·

(
1 +

1
p6
+ ... +

1
p6

k6

)
...

(
1 +

1
pn
+ ... +

1
pn

kn

)
.

Since N is an perfect number, σ(N) = 2N, and since N is odd, σ(N) is

divisible by 2 but not 4. Note that, if k1, k2, or k3 is equal to one, then(
1 +

1
3
+ ... +

1
3k1

)
=

4
3(

1 +
1
7
+ ... +

1
7k2

)
=

8
7(

1 +
1
11
+ ... +

1
11k3

)
=

12
11
,

which would imply that σ(N) is divisible by 4. Thus, k1, k2, and k3 are at

least 2.

Observe,

2 =
σ(N)

N
≥

(
1 +

1
3
+

1
32

)
·

(
1 +

1
7
+

1
72

)
·

(
1 +

1
11
+

1
112

)
·

(
1 +

1
13

)
·

(
1 +

1
37

)
=

13
9
·

57
49
·

133
121
·

14
13
·

38
37
=

52430196
25666641

> 2,

which is a contradiction. Thus, an odd perfect number is not divisible by

111,111. QED

Note that the proof for Theorem 24 given here follows the structure of

Sylvester’s proof of Theorem 22 and the proof that I gave to show that an odd

perfect number cannot be divisible by 2145 in [29]. The 109 non-divisors that
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I found are given as follows from [29].

3 · 5 · 11 · p, where p is prime and 13 ≤ p ≤ 19

3 · 5 · 11 · 23 · 29 = 110055

3 · 5 · 13 · 17 · 19 = 62985

3 · 7 · 11 · 13 · p, where p is prime and 17 ≤ p ≤ 179

3 · 7 · 11 · 19 · 23 = 100947

3 · 7 · 11 · 23 · 31 · 43 = 7082229

3 · 11 · 13 · 17 · 19 · 23 · 29 = 92424189

3 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · p, where p is prime and 41 ≤ p ≤ 389

3 · 13 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 = 46974009365049

5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 · 31 = 33426748355

I found these non-divisors with the help of a spreadsheet.

I end [29] with a discussion of primitive abundant numbers, which I de-

fined slightly differently than in Definition 7. I defined primitive abundant

numbers as either perfect or abundant numbers that have no perfect or abun-

dant proper divisors. In [29], I end with Conjecture 3.

Conjecture 3 There are infinitely many distinct numbers that can be proven

not to divide an odd perfect number using a generalization of Sylvester’s

proof.

A Note on Erdős

Paul Erdős was an amazing mathematician and a prolific writer of mathe-

matical published work. During his life he published around 1,500 papers

(a number which remains unsurpassed by any other mathematician) and nu-

merous books. While writing [29] I was trying to determine if I could prove
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Conjecture 3 and I realized that I could do so if it had already been proven

that there are infinitely many odd primitive abundant numbers. I ran across a

book on number theory coauthored by Erdős cited as [26], which, on p.244

listed as an exercise to the reader, “Prove that there are infinitely many odd

primitive abundant numbers.” This gave me a moment of hope that it had

been proven as textbook writers don’t usually leave unsolved problems as

exercises for the reader. Alas, whether or not there are infinitely many odd

primitive abundant numbers remains an open question. Erdős is just the kind

of person who would leave such a problem to an unsuspecting undergraduate

who is just starting out in number theory.

Computational Response to Vaaler

Dr. Vaaler defined the function ρ̃ : N → Q in [27], which, for our purposes,

we define as in Definition 17.

Definition 17 Define ρ̃ so that, for n ∈ N, ρ̃(n) = I(n) − ⌊I(n)⌋.

In [27], Vaaler posed the question, “does the limit

lim
N→∞

N−1
N∑

n=1

cos 2πρ̃(n) (4)

exist? And if [the limit shown above] does exist, what is the value of the

limit?”

I wrote some Python code to compute equation 4 along with some other

limits that came to my attention. My code generated the following graph.
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This graph shows

g1(N) = N−1
N∑

n=1

cos 2πρ̃(n)

g2(N) = N−1
N∑

n=1

ρ̃(n)

g3(N) = N−1
N∑

n=1

eρ̃(n)

g4(N) = N−1
N∑

n=1

σ(n)
n
.

Observation of this graph and the table of values generated by my code sug-

gests that the limit as N → ∞ exists for each of these functions and leads me
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to propose the following estimates.

lim
N→∞

N−1
N∑

n=1

cos 2πρ̃(n) ≈ 0.113 (5)

lim
N→∞

N−1
N∑

n=1

ρ̃(n) ≈ 0.376 (6)

lim
N→∞

N−1
N∑

n=1

eρ̃(n) ≈ 1.52 (7)

lim
N→∞

N−1
N∑

n=1

σ(n)
n
≈ 1.64 (8)

From Corollary 1 we have that

lim
N→∞

N−1
N∑

n=1

σ(n)
n
=
π2

6
= 1.644934067...

which is accurate up to three decimal places with

10000−1
10000∑
n=1

σ(n)
n
≈ 1.6444958900708022

and supports the estimation in equation 8.

Forms of Odd Multiply Perfect Numbers

During the Summer of 2023 I began looking at possible forms that odd n-

perfect numbers for values of n aside from 2 could have, and I started to

notice some interesting patterns. I wrote my findings on this topic as a paper

which has been submitted for publication and which I cite as [14].

In [14], I prove Lemma 5 and use it to define the function υ as in Defini-

tion 18.

Lemma 5 For every n ∈ N, there exists a unique k ∈ Z≥0 such that n ≡ 2k−1

mod 2k+1.

Definition 18 Let the function υ : N→ Z≥0 be defined as υ(n) = j where j is

the unique nonnegative integer such that n ≡ 2 j − 1 mod 2 j+1.
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The theorem that I am most proud of in [14] is Lemma 6. Proving Lemma 6

was the first time that I had the opportunity to use an inductive proof outside

of a classroom setting.

Lemma 6 Let p ∈ N be odd and let j ∈ N. Then, ∀n ≡ 2 j − 1 mod 2 j+1,

pn + ... + p + 1 ≡ 2υ(p)+ j−1 mod 2υ(p)+ j.

Importantly, Corollary 3 follows from Lemma 6.

Corollary 3 Let p be an odd prime and let n ∈ N be odd. Then σ(pn) ≡

2υ(p)+υ(n)−1 mod 2υ(p)+υ(n).

Using Corollary 3 and other related corollaries and lemmas, I was able to

prove Theorem 25 and Theorem 26, which are given in [14].

Theorem 25 Given an odd 4k-perfect number M where k is odd, M is of one

of the following three forms where each pi j is a distinct odd prime that does

not divide s, pi j ≡ ai j ≡ 2i − 1 mod 2i+1, and s is odd.

M = p11
a11 · p12

a12 · s2 (9)

M = p11
a21 · s2 (10)

M = p21
a11 · s2 (11)

Theorem 26 Given an odd 8k-perfect number M where k is odd, M is of one

of the following six forms where each pi j is a distinct odd prime that does not
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divide s, pi j ≡ ai j ≡ 2i − 1 mod 2i+1, and s is odd.

M = p11
a11 · p12

a12 · p13
a13 · s2 (12)

M = p11
a11 · p21

a12 · s2 (13)

M = p11
a11 · p12

a21 · s2 (14)

M = p11
a31 · s2 (15)

M = p21
a21 · s2 (16)

M = p31
a11 · s2 (17)

I also gave a theorem in [14] which lists all 13 possible forms of a 16k-perfect

number with odd k.

The other part of [14] that I am very proud of is the Final Remarks section.

In this section I begin by defining the function ρ as in Definition 19.

Definition 19 Let ρ be defined as, for t ∈ Z≥0,

ρ(t) =

{(n1, k1), (n2, k2), ..., (n j, k j)
}
| ni, ki ∈ N, each ni is distinct,

j∑
i=1

niki = t

 .
Given t ∈ Z≥0, ρ(t) is my way of expressing the set of integer partitions of t.

An integer partition is a collection of positive integers that can be summed

together to equal a given integer. For example, the five distinct integer parti-

tions of 4 are 4, 3+1, 2+2, 2+1+1, and 1+1+1+1, the seven distinct integer

partitions of 5 are 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, and 1+1+1+1+1,

etc. My way of expressing an integer partition is as a set of tuples (n, k)

where each n is a positive integer that appears in the partition and k is the

number of times it appears, where each n is distinct. For example, the five

distinct elements of ρ(4) aka the integer partitions of 4, given in the same

order as before, are {(4, 1)}, {(3, 1), (1, 1)}, {(2, 2)}, {(2, 1), (1, 2)}, and {(1, 4)},

the seven distinct elements of ρ(5) aka the integer partitions of 5 are {(5, 1)},
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{(4, 1), (1, 1)}, {(3, 1), (2, 1)}, {(3, 1), (1, 2)}, {(2, 2), (1, 1)}, {(2, 1), (1, 3)}, and

{(1, 5)}, etc. Note that ρ(0) equals the empty set.

I then define the function ω as in Definition 20.

Definition 20 Define ω : Z≥0 → N so that, for t ∈ Z≥0

ω(t) =
∑

A∈ρ(t)

∏
(n,k)∈A

(
n + k − 1

k

)
Using theω-function defined as in Definition 20, I proved Theorem 27 in [14].

Theorem 27 A 2tk-perfect number M with odd k and t ∈ Z≥0 has ω(t) possi-

ble forms.

I calculated ω(n) from n = 0 to 11 and I got the following sequence of

values, as given in [14].

1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, ...

Interestingly, this sequence aligns with OEIS A000219 ([21]). The On-line

Encyclopedia of Integer Sequences is a searchable catalog of sequences that

have been of interest to a mathematician at one time or another. It is valuable

because, when a mathematician comes across a sequence, they can easily and

quickly check if the sequence has a known equation, has been studied, or has

appeard in any literature by searching for it within OEIS.

OEIS A000219 is the number of planar partitions of n. A planar partition

of n is a two dimensional partition of n, where the rows and columns decrease

from left to right and top to bottom. For example,

3 2 1 . 3 3 . 1 1 1 . 6 3 . 9 . 4

1 1 . 2 . 1 1 1 . . . 4

1 . 1 . 1 1 1 . . . 1
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represent six valid planar partitions of 9 since

9 = (3 + 1 + 1) + (2 + 1) + (1)

= (3 + 2 + 1) + 3

= (1 + 1 + 1) + (1 + 1 + 1) + (1 + 1 + 1)

= (6) + (3)

= (9)

= (4 + 4 + 1)

whereas three invalid examples of planar partitions are

1 2 1 . 3 3 . 1 1 1

3 1 . 2 . 1 1 1

1 . 1 . 1 2

because not all rows and columns decrease from left to right and top to bot-

tom.

Noticing that my sequence aligned with OEIS A000219 led me to Conjec-

ture 4 ([14]).

Conjecture 4 The number of planar partitions of n ∈ Z≥0 is equal to ω(n).

I tried to prove Conjecture 4 by finding a surjective mapping from the set of

planar partitions of n ∈ Z≥0 to each possible form of a 2nk-perfect number

with odd k, but was not successful. I have come to the conclusion that proving

Conjecture 4 is out of the scope of my research.

Songs and Presentations

I completed six presentations on OPNs and MPNs. A summary and abstract

of each presentation is given in the appendix. I wrote a total of four songs

on perfect numbers which I performed during my presentations. I found that
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breaking into song in the middle or at the end of my talks was a good way

to engage my audience, make the subject matter more memorable, and make

my talks more exciting. My audiences responded well to the songs and my

musical interludes were always met by applause. The lyrics to each of my

songs can also be found in the appendix.
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Final Remarks

For my first paper, cited as [29] and published in Fall 2022, I won the Richard

V. Andree Award, which is “given annually to the authors of the papers,

written by undergraduate students, that have been judged by the officers and

councilors of Pi Mu Epsilon to be the best that have appeared in the Pi Mu

Epsilon Journal in the past year” ([22]).

My second paper has been submitted for publication and is awaiting a

decision from the editor. I had intended to write a third paper on possible

non-divisors of odd triperfect numbers, but found that that had already been

covered by [17]. I also considered creating a database of known multiply

perfect numbers but found that that had been done by [11].

The odd perfect number problem remains to be solved. New advance-

ments on the problem are made regularly and I am hopeful that it will be

solved in my lifetime. I also hope that the contributions that I have made to

the problem will be a part of the solution for the OPN problem, but I know

that this is unlikely. There are many approaches that number theorists have

taken to the OPN problem and I have only been able to study a few.

In addition to OPNs, we looked at multiply perfect numbers, the sigma

function and the abundancy index, primitive abundant numbers, super per-

fects, and spoof perfects. For many of these numbers, studying even exam-

ples is easier than studying odd examples and odd instances tend to have

a lot more open questions surrounding them. Similar to the OPN problem,

it will be interesting to see what advancements in our understanding of the

other abundancy-defined numbers will emerge in coming years. I expect that

studying these other numbers is how the OPN problem will be solved.

34



References

[1] H. A. Bernhard. On the least possible odd perfect number. The Ameri-

can Mathematical Monthly, 59(9):628–629, November 1949.

[2] Ray Candlish. Mersenne primes, perfect numbers and triangular num-

bers. Mathematics in School, 35(4):32–33, September 2006.

[3] W. Edwin Clark. Elementary Number Theory. University of South

Florida, 2003.

[4] Graeme L. Cohen and Ronald M. Sorli. On odd perfect numbers and

even 3-perfect numbers. Integers, 2011.

[5] G. G. Dandapat, J. L. Hunsucker, and Carl Pomerance. Some new re-

sults on odd perfect numbers. Pacific Journal of Mathematics, 57(2),

1975.

[6] Leonard Eugene Dickson. Finiteness of the odd perfect and primitive

abundant numbers with n distinct prime factors. American Journal of

Mathematics, 35(4):413–422, October 1913.

[7] Leonard Eugene Dickson. History of the Theory of Numbers, volume 1.

AMS Chelsea Publishing, Providence, Rhode Island, 1992.

[8] Samuel J. Dittmer. Spoof odd perfect numbers. Mathematics of Com-

putation, 83(289):2575–2582, September 2014.

[9] William Dunham. Odd perfect numbers: A triptych. The Mathematical

Intelligencer, 42:42–46, 2020.

[10] Luke Durant. Gimps discovers largest known prime number: 2136279841−

1. https://www.mersenne.org/primes/?press=M136279841, October

2024.

35



[11] Achim Flammenkamp. The multiply perfect numbers page.

Accessed online February 23, 2025 at https://wwwhomes.uni-

bielefeld.de/achim/mpn.html, 2023.

[12] S. Adam Fletcher, Pace P. Nielson, and Pascal Ochem. Sieve methods

for odd perfect numbers. Mathematics of Computation, 81(279):1753–

1776, July 2012.

[13] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Num-

bers. Clarendon Press, Oxford, 1968.

[14] Jasmine Wetter Hiebert. Forms of multiply perfect numbers. Not yet

published, 2025.

[15] Judy A. Holdener. A theorem of touchard on the forms of odd perfect

numbers. The American Mathematical Monthly, (7):661–663, 2002.

[16] Judy A. Holdener. Conditions equivalent to the existence of odd perfect

numbers. Mathematics Magazine, 79(5):389–391, December 2006.

[17] Masao Kishore. Odd triperfect numbers. East Carolina University De-

partment of Mathematics, 1984.

[18] Steve Nadis. Mathematicians opan a new front on an

ancient number problem. Accessed online February

2025 at https://www.quantamagazine.org/mathematicians-

open-a-new-front-on-an-ancient-number-problem-

20200910/: :text=Mathematicians2020.

[19] Numberphile. The man who found the world’s

biggest prime. Accessed online February 2025 at

https://www.youtube.com/watch?v=Yp4ilFOtoeg, 2024.

36



[20] Pascal Ochem and Michaél Rao. Odd perfect numbers are greater than

101500. Mathematics of Computation, 81(279):1869–1877, July 2012.

[21] OEIS Foundation Inc. Number of plane partitions (or planar parti-

tions) of n. Entry A000219 in The On-Line Encyclopedia of Integer

Sequences, https://oeis.org/A000219, 2025.

[22] Pi Mu Epsilon. Richard v. andree awards. Accessed online at

https://pme-math.org/richard-v-andree-awards: :text=Theon March 15n

2025, 2025.

[23] Paul Pollack. On dickson’s theorem concerning odd perfect numbers.

The American Mathematical Monthly, 118(2):161–164, February 2011.

[24] PrimePages. The largest known primes–a summary. Accessed online at

https://t5k.org/largest.html, February 2025.

[25] T. M. Putnam. Perfect numbers. The American Mathematical Monthly,

17(8/9):165–168, 1910.
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Appendix

Songs

Song #1 “The Perfect Number Song”

Originally performed at AES 2022. Note that this song is out of date, as there
are now 52 known perfect numbers.
Let me sing you a song about... Perfect Numbers,
Equal to the sum of their... proper factors.
Even ones we know exist
We’ve found 51 including 6, 28, and 496,
And the largest one has over 49 million digits.
Odd perfect numbers are harder to find
Mathematicians have been searching for a very long time
Can we find an odd perfect number?
Or at least prove their nonexistence forever?
We must learn from our mistakes.
Learn from the wrong paths we may take.
And someday, someone, will solve...
The mystery of the odd perfect number.

Song #2 “Odd Perfect Numbers”

Originally performed as the finale of AES 2022.
Odd perfect numbers, a passion of mine.
Odd perfect numbers, so hard to find.
Now we know a bunch of numbers you’re not divisible by
Including, but not limited to 105.
I’m almost certain you don’t exist, but I wish I knew why.
Odd perfect numbers, so hard to find.
Odd perfect numbers,
We’ve searched high and we’ve searched low,
And now we know that there are none below
Ten to the 2000th power
And that’s a big number.
Odd perfect numbers, so hard to find.

Song #3 “Multiply Perfect”

Originally performed at AES 2024
Multiply perfect...
Divisor of the sum of your factors
We want to prove all the conjectures
But you’re just a number, just an integer
Just a natural
Everyone wants to find you
Everyone wants your primes
Everyone wants your form
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They want to know you, to study you
You are their muse
”I’m not so special!” you declare.
”My abundancy is an integer, but that’s all that’s there.
Why must my identity be based on something that’s just part of me.
Why do I have to justify the reason that I am me.”
One is the only odd one that we know
And one seems to like being alone
The search for odd 2-perfects has been big and in vain.
The search for even 2-perfects seems to leave room for gain.
Triperfects, or 3-perfect if you prefer,
Six are known
But are they alone?
If they are, there are no OPNs.
And that would bring that question to an end.
Multiply perfect...
Divisor of the sum of your factors
So many conjectures
But you’re just a number, just an integer,
Just a natural

Song #4 “Multiply Perfect (ver. 2)”

Originally performed at JMM 2025
Multiply perfect...
Divisor of the sum of your factors
Your abundancy is whole
But you’re just a number, just an integer
Just a natural
Everyone wants to find you
Everyone wants your primes
Everyone wants your form
They want to know you, to study you
You are their muse
One is the only odd one that we know
And one seems to like being alone
The search for odd perfects has been big and in vain
The search for even perfects seems to leave room for gain
Triperfect, or 3-perfect if you prefer,
Six are known but are they alone?
Do they have any other friends?
One day we’ll bring this question to an end
Multiply perfect...
Divisor of the sum of your factors
So many conjectures
But you’re just a number, just an integer
Just a natural
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Summary of Presentations

Following is a list of the presentations I have given on odd perfect numbers

and related topics in chronological order.

(Western Oregon University Academic Excellence Showcase 2022) “The

Mathematical Mystery of Odd Perfect Numbers,” May 26, 2022.

The information in this presentation is covered and then some by my first

paper, published Fall 2022. The main result is generalizing Sylvester’s 105

proof and finding a bunch of other ‘odd perfect number non-divisibility num-

bers,’ as I call them.

Abstract. Perfect numbers are numbers that are equal to the sum of their

proper factors (for example, 28 is a perfect number because 28 = 1 + 2 +

4 + 7 + 14). We will discuss some of the characteristics of perfect numbers,

specifically those that relate to the open question of the existence of odd

perfect numbers. This project expands upon previous results regarding the

divisibility of odd perfect numbers.

(Oregon Number Theory Days hosted by Oregon State University 2023)

“How to find Integers that Cannot Divide Elusive Odd Perfect Numbers:

Generalizing Sylvester’s Proof,” February 18, 2023.

This presentation covered most of the same information as my AES 2022

presentation, except by this point my paper had been finalized and published

and I had found even more non-divisibility numbers. At this conference I met

Dr. Jeff r, emeritus professor of mathematics at OSU, who I sent a draft copy

of my paper to over email. He responded with four pages of notes and a

question which he posed to me in response to my paper. I responded to his

notes and attempted to answer his question to the best of my ability during

summer 2023.
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Abstract. Odd perfect numbers have been of interest to mathematicians

for millennia. While they are generally believed not to exist, no one has been

able to prove their nonexistence. Many discoveries have been made regarding

the characteristics of odd perfect numbers, including James Sylvester’s 1888

proof that no odd perfect number is divisible by 105. We will discuss a

generalization of Sylvester’s proof that allows us to prove that 2145 and at

least 108 other integers aside from 105 are impossible odd perfect number

divisors.

(Northwest Undergraduate Mathematics Symposium 2023, held virtu-

ally) “How to find Integers that Cannot Divide Odd Perfect Numbers

using a Generalization of Sylvester’s Proof,” November 11, 2023.

This was a repeat of information from my last two presentations. In all

three presentations I sang “The Perfect Numbers Song” and “Odd Perfect

Numbers.” The songs got wonderful responses in all my presentations. All

the mathematicians present loved to hear some number theory set to music,

which does not happen very often.

Abstract. A widely known and thought about open question in number

theory is whether or not an odd perfect number, that is an odd positive in-

teger equal to the sum of its proper divisors, exists. In 1888, James Joseph

Sylvester proved that such a number cannot be divisible by 105. This pre-

sentation includes an extension of Sylvester’s proof discovered recently by

the speaker and lists more integers that can be proven not to divide an odd

perfect number. We will also discuss how to find such integers.

(BOT Meeting) “Divisibility Conditions for Odd Perfect Numbers,” April

16, 2024.

I was asked to give a five minute presentation before WOU’s Board of
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Trustees demonstrating the research I have done. At the end I was asked

to perform one of my songs. I sang “Odd Perfect Numbers” from memory,

without practice. It was fun and well-received.

Abstract. No abstract.

(Western Oregon University Academic Excellence Showcase 2024) “The

Mathematical Mystery of Odd (Tri)Perfect Numbers,” May 30, 2024.

In this presentation I dropped new research which I completed for the

event. I found an odd triperfect number non-divisibility number.

Abstract. This is a continuation of the AES 2022 presentation “The Math-

ematical Mystery of Odd Perfect Numbers.” The first presentation shared

a generalization of J.J. Sylvester’s 1888 proof that an odd perfect number,

should one exist, cannot be divisible by 105. Sylvester’s proof had not been

generalized prior to this point. This second presentation will look at ex-

tending Sylvester’s proof to find integers that cannot divide odd triperfect

numbers. This is a new result in number theory.

(Joint Mathematics Meeting 2025) “Odd Perfects, Multiply Perfects, and

Non-Divisors, oh my! An Exploration of the Odd Perfect Number Prob-

lem,” January 9, 2025.

I gave this presentation at by far the largest conference that I have ever

been to. In my presentation I discuss non-divisors of odd 2-perfect, 3-perfect,

and 4-perfect numbers. I also shared some new conjectures about the forms

of odd multiply perfect numbers. I referenced the work of Sylvester and Euler.

Abstract. Perfect numbers, and the broader collection of multiply perfect

numbers are a much studied yet little understood facet of number theory. The

infamous OPN problem can be simply stated but has proven to be one of the

hardest problems in number theory to solve. The question behind it is: do
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odd perfect numbers exist? Of the 51 known perfect numbers (the smallest

being 6 and the largest being 282589932 × (282589932 − 1))) all are even. There

is only one out of the known 5932 multiply perfect numbers that is odd.

Most number theorists conjecture that there is one and only one odd multiply

perfect number but there are infinitely many even multiply perfect numbers.

In 1888, James Joseph Sylvester proved that if an OPN exists, then it cannot

be divisible by 105. We extend Sylvester’s result to other odd multiply perfect

numbers, illuminate other values aside from 105 that can be proven to be an

odd perfect number non-divisor, and attempt to shed some new light on this

very old problem.
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Summary of Papers

“Generalization of Sylvester’s Proof that an Odd Perfect Number is not

Divisible by 105,” Pi Mu Epsilon Journal, Vol. 15, No. 7, (2022).

With this paper I won the 2022 Richard V. Andree Award, which is “given

annually to the authors of the papers, written by undergraduate students, that

have been judged by the officers and councilors of Pi Mu Epsilon to be the

best that have appeared in the Pi Mu Epsilon Journal in the past year” ([22]).

I completed this paper under the edit suggestions and research guidance of

Dr. Leanne Merrill during an independent study completed in Winter 2022.

Abstract. Odd perfect numbers have been of interest to mathematicians

for millennia. Many discoveries have been made regarding the characteristics

of odd perfect numbers, including James Sylvester’s 1888 proof that no odd

perfect number is divisible by 105. This article, which generalizes Sylvester’s

proof, proves that an odd perfect number is also not divisible by 2145 and

discusses the extension of this result to at least 108 other impossible divisors.

“Forms of Odd Multiply Perfect Numbers,” unpublished, (2025).

I completed this paper under the guidance of Dr. Cheryl Beaver during

an independent study completed in Winter 2025.

Abstract. The form of an odd 2-perfect number was established by Euler

in the 18th century to be N = pa · s2 where p is prime, p ≡ a ≡ 1 mod 4, and

gcd(p, s) = 1. We will prove that odd 4-perfect numbers, 8-perfect numbers,

and 16-perfect numbers have exactly 3, 6, and 13 possible forms, respec-

tively. We will give these possible forms and provide an equation which we

conjecture to count the number of possible forms of other odd MPNs.
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