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Introduction and Background

A perfect number is a number that is equal to the sum of its proper divisors.
For example, 6 is a perfect number because its proper divisors are 1, 2, and
3and 6 = 1 +2 + 3. A non-example of a perfect number is 8, whose proper
factors sumto 1 + 2 +4 =7 # 8. The next smallest perfect number after 6 is
28 = 1+2+4+7+ 14 and after 28 we have 496. There are 52 known perfect
numbers. The largest one was discovered in October 2024 and has more than
82 million digits ([10]).

All 52 known perfect numbers are even. Given this observation, it is natu-
ral to ask, do odd perfect numbers exist? Indeed, many people have asked this
question before. Number theorists have been wondering whether or not odd
perfect numbers exist for more than 2,000 years and yet we remain unable to
rigorously answer the problem. Our understanding of odd perfect numbers
provides a stark contrast to how well-studied and formulated even perfect
numbers are. Every few years increased computational power partnered with
our understanding of even perfects allows us to find a new even perfect num-
ber. The more we search for odd perfect numbers, the more elusive they
seem.

We will be talking about the odd perfect number problem and a smorgas-
bord of related problems, such as multiply perfect numbers, super perfect
numbers, and primitive abundant numbers in our literature review. Before
we do so, we will formally define all the terms and functions we need in the
Theoretical Frameworks section, which can be used as a reference for these
terms as we proceed through the rest of the paper. Our discussion will cul-
minate in my original work with non-divisors of odd perfect numbers and

determining the possible forms of multiply perfect numbers.



Theoretical Frameworks

Before we can discuss important theorems, conjectures, and new findings
surrounding odd multiply perfect numbers we need to establish the notation
that we will be using and define important terms using formal mathematics.
The Theoretical Frameworks section serves that purpose and acts as a place
of reference for definitions as we get into the Literature Review and Original
Work sections.

First, we will define the o-function and the abundancy index as these
two functions simplify working with multiply perfect numbers and have nice

properties.

Definition 1 (The o-function) Define the function o such that o(n) is equal

to the sum of all of the divisors of n, including 1 and n itself, where n € N.

As an example of the sigma function, o(8) = 1 + 2 + 4 + 8 = 15, because
the divisors of 8 are 1, 2, 4, and 8. As an additional example, o(12) =

1+2+3+4+6+ 12 = 28.

Definition 2 (The Abundancy Index) Define the function I such that 1(n)

2%, where n € N. Note that I(n) is called ‘the abundancy index of n.’

As an example of the abundancy index in action, /(8) = @ = % = 1.875.

We now define gcd aka the greatest common divisor function.

Definition 3 (Greatest Common Divisor) Let a,b € N. Then the greatest
common divisor of a and b, written as gcd(a, b), is the largest integer that
divides both a and b. Furthermore, a and b are called relatively prime if and

only if gcd(a, b) = 1.

Observe that ged(12, 16) = 4 since the largest integer that divides 12 and 16

is 4. Also, gcd(9,20) = 1 since 9 and 20 have no common divisors aside
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from 1, meaning that 9 and 20 are relatively prime. Let us also define what it

means for a number to be prime.

Definition 4 (Prime) A prime number p € N has exactly two distinct divi-

sors, which are 1 and p.

Note that 1 is not a prime number because 1 has exactly one distinct divisor
(which is itself). The smallest prime number is 2 and there are infinitely many
prime numbers as stated in Theorem|[I] Theorem|[I|was first proved by Euclid

and is well known.
Theorem 1 There are infinitely many prime numbers.

Lemmas [I], [2 and 3] give some useful characteristics of o. Lemma [I] fol-
lows directly from the definition of the o-function and the behavior of primes

raised to a power.

Lemma 1 (Euler and the o-function Part 1) If p is a prime number and

keN, theno(p¥)=1+p+p*>+---+ p~

Lemma [2] makes use of the greatest common divisor function which we de-

fined earlier.

Lemma 2 (Euler and the o-function Part 2) Ifa, b € N with gcd(a, b) = 1,

then o(a-b) = o(a)-o(b). This means that o has the multiplicative property.

Lemma [3] follows directly from the formula for geometric series, which can

be found in any elementary number theory textbook such as [3]].

Lemma 3 (Extension of Lemma([I)) If p is a prime number and k € N, then

k+l_]

o(ph) =

We are going to be heavily discussing multiply perfect numbers, so let’s

define them in Definition 3



Definition 5 (Multiply Perfect Numbers) Let M € N. Then M is multiply
perfect if and only if (M) € Z. Additionally, M is called n-perfect for n € N

ifand only ifc(M) =n-M & I(M) = n.

Note that 2-perfect numbers are commonly referred to as simply ‘perfect’
and that 3-perfect numbers are commonly called ‘triperfect.’

We will make reference to abundant and deficient numbers as defined in
Definition[6] The definition of the abundancy index is closely tied to Defini-

tion [6L

Definition 6 (Abundant and Deficient) A number n is called abundant if

I(n) > 2 and is called deficient if I(n) < 2.

An extension of abundant numbers is primitive abundant numbers, defined in

Definition [ZL

Definition 7 (Primitive Abundant Numbers) A number n is called a prim-
itive abundant number if it is non-deficient and if it is not a multiple of any

smaller non-deficient number.

The set of perfect numbers is a subset of the set of primitive abundant num-
bers.
Lemma [4]is logically equivalent to a theorem that appears in [7] and will

be important to us later.
Lemma 4 Forall m,n € N withm # 1, I(mn) > I(n).

Now we will formally define divides, double bar divides (which is an ex-

tension of divides), and modular arithmetic.

Definition 8 (Divides) Given a,b € Z, we write a | b or say ‘a divides b’ if

and only if there exists k € Z such that a - k = b. Otherwise, we write a { b.



As an example of divides, we say 4 | 36 since 9 € Z and 4 - 9 = 36 however

4 1 26 since there is no k € Z such that 4 - k = 26.

Definition 9 (Double Bar Divides) Given a,b € Z, we write a || b if and

only ifa| b and ged(a,2) = 1.

As an example of double bar divides, 10 || 30 since 10 | 30 and % =31s

relatively prime to 10.

Definition 10 (Mod) We write n = r mod g and say ‘n is congruent to r
mod q’ for n,q,r € Z if and only if q | (n — r) or, equivalently, there exists

k € Z such thata =q -k +r.

Modular arithmetic is far simpler than it sounds when defined formally. As
anexample 5 =1 mod 4since4 | (5—1)but7 2 mod 4 since 4 1 (7-2).
Another set of numbers that will come up in our conversation is the trian-

gular numbers, which are defined in Definition

Definition 11 (Triangular numbers) A triangular number is equal to 1 +2+

3 + ... + n for some n in the natural numbers.

The triangular numbers are 1, 14+2=3, 1+2+3=6, 1+2+3+4=10, 1+2+3+4+5=15,
1+42+3+4+5+6=21, etc.

While lim sup does not play a huge role, it will come up later in our dis-
cussion of the o function. Note that a sequence is simply an ordered, infinite
set of numbers. For example, the triangular numbers (1,3,6,10,15,...) is a

sequence.

Definition 12 Given a sequence (a,) = (a;, ay, as, ...) that is bounded above,

lim sup a,, is the smallest upper bound of (a,).

Full understanding of lim sup is outside of the scope of our analysis.



There will be some more definitions and lemmas that come up later, but
we now have the necessary items in our toolkit to proceed into our literature

review.



Literature Review

Most number theorists who have studied the odd perfect number problem
generally come to the conjecture that odd perfect numbers cannot exist. As
John Voight, professor of mathematics at Dartmouth College, said “proving
that something exists is easy if you can find just one example, but proving that
something does not exist can be really hard” ([18]]). James Joseph Sylvester,
who in 1888 proved that an odd perfect number cannot be divisible by 105
and that an odd perfect number must have at least three distinct prime factors,
reflected “the existence of [an odd perfect number]—its escape, so to say, from
the complex web of conditions which hem it in on all sides—would be little
short of a miracle” ([[18]).

The majority of theorems regarding odd perfect numbers follow the struc-
ture of ‘If an odd perfect number exists, then [conclusion].” To prove that
an odd perfect number does not exist it would suffice to prove two such the-
orems with contradictory conclusions hold. Most of the theorems that have
been proven pertaining to odd perfect numbers were written with the hope
of finding a contradiction. In the 2,000 years that odd perfect numbers have
been recognized and studied, mathematicians have established “an extraordi-
nary list of restrictions,” but no contradiction has yet been reached ([[18]]).

If an odd perfect number exists then it is larger than 10'°% ([20]). For
comparison, there are only about 1082 atoms in the observable universe. An
odd perfect number would have to be an incredibly large number. The lower
bound for odd perfect numbers is constantly being improved as increased
computational power can be applied to the problem. A paper published in
1949 gives that the lower bound for odd perfect numbers is 2,000,000,000 or

2 - 10° showing just how much the bound has been improved in the last 75



years ([1]]). Further, the largest prime power in an OPN’s prime decomposi-

tion is greater than 10%? and it must have at least 101 prime factors ([20]).

Spoof Perfect Numbers

The set of odd perfect numbers is a subset of the set of odd ‘spoof” perfect
numbers. A spoof perfect number is a number that would be perfect if you
ignored one shortcoming. For example, the first spoof perfect number was
discovered by Descartes in 1638 and is 198,585,576, 189 = 32.72.11%.
13%-22,021" ([18]]). Descartes’ number would be a perfect number under the
multiplicative property of the sigma function if only 22,021 were prime. The
second spoof odd perfect number was discovered 361 years later in 1999 by
John Voight and is —22,017,975,903 = 3*.72 - 112 -19% . (=127)!, which
would be perfect if we pretend that —127 isn’t negative.

Voight, along with a team of other math professors and students at BYU,
completed a study of spoof perfect numbers in 2019. The team used 20 paral-
lel processors over the course of three years to find all possible spoof perfect
numbers with factorizations of six or fewer bases ([18]]). They found a to-
tal of 21 spoofs (including Descartes’ and Voight’s original two examples)
and an additional two spoofs with factorizations of seven bases ([18]). The
BYU team also found that there are infinitely many spoofs, but there are only
a finite number of them for any fixed number of bases. In a paper titled
“Spoof Odd Perfect Numbers” published in 2014 ([8]), the author, Samuel J.
Dittmer, thanked the BYU Mathematics Department for “support of this re-
search,” showing the significant role that this team has played in the research
surronding spoof perfect numbers.

Dittmer defines spoof perfect numbers slightly more specifically than we

have. Definition [I3]is logically equivalent to Dittmer’s definition of spoof



perfect numbers.

Definition 13 (Dittmer’s definition of spoof perfect numbers) A spoof per-

ect number S can be written as S = p®' - p% - ... - p™ where k € N and
Py Py Py
_ p?1+1 _ 1 ' p6212+1 _ 1 ka-i-l _ 1

28

p1—1 p2—1 pr—1 -

We refer to the p; as ‘quasi-primes.’

Notice that Dittmer’s definition compared to the definition of a perfect num-
ber only relaxes the fact that every base in the factorization of the number
must be a distinct prime. Dittmer calls the bases ‘quasi-primes’ because they
may or may not be primes but, regardless, they are treated like primes un-
der the sigma function in order to produce a spoof perfect number (note that
o(p") = % when p is prime by Lemma . Unlike Voight, Dittmer does
not include negative spoofs in his definition.

Using his definition of spoof perfect numbers, Dittmer proved Theorem

([8).

Theorem 2 The only spoof odd perfect number (defined under Definition
with less than seven quasi-prime factors is Descartes’ example, 3> - 7% - 112 -

13222021,

Dittmer also found an algorithm for generating odd spoofs and he showed
that there are infinitely many even spoofs. In [8]], he gives three infinite fam-

ilies of even spoof perfect numbers which we give as Theorem 3|

Theorem 3 For all n > 1 and a > 1, the following are even spoof perfect
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numbers.

2n—1(2n _ 1)1 (1)

ntn+ DL..2n -1} 2)
a+l _ 1 a+l _ 1

na-(” 1) (” 1+1) (20 = 1) 3)
n-—1 n-—1

Notice that, with reference to Theorem that the set of all even perfect
numbers is a subset of the set of numbers of the form given by equation .
Since the set of odd perfect numbers is a subset of the set of odd spoofs,
any property that is proven to hold true for odd spoofs must also hold for
odd perfects. In this way Voight, the BYU team, and Dittmer successfully

tightened the net on the odd perfect number problem.

Primitive Abundant Numbers

The set of perfect numbers is a subset of the set of primitive abundant num-
bers, so these two sets share quite a few characteristics. Per Definition
a primitive abundant number is a non-deficient number that is not divisible
by any other non-deficient numbers. The smallest odd primitive abundant
number is 945 and the smallest even primitive abundant number is 20. A
list of other odd primitive abundant numbers is given in [6]. By Theorem
the abundancy of any multiple of a perfect number, similar to the rest of the
primitive abundant numbers, will be greater than two, or abundant.

The main result of [6] is given in Theorem

Theorem 4 There is only a finite number of primitive non-deficient odd num-

bers having any given number of distinct prime factors.

Theorem [ suggests, as Leonard Eugene Dickson points out in a corollary
in [6]], there cannot be infinitely many “odd perfect numbers with any given

number of distinct prime factors.” Dickson emphasizes in the footnotes that
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Theorem @ only applies to odd numbers since “if p is prime 2" p is non-
deficient if and only if 2"*! > p+1,” which shows that there can be infinitely
many even primitive abundant numbers with a given number of distinct prime
factors [6]].

In [23] Paul Pollack expands upon a theorem of L. E. Dickson in [6]. We
gave Dickson’s theorem as Theorem [4] and we give Pollack’s generalization

of Dickson’s theorem as Theorem [3

Theorem S For each positive integer k, the number of odd perfect numbers
N where the number of distinct prime factors of N is less than or equal to k

is bounded by 4k

Multiply Perfect Numbers

Yet another superset of perfect numbers is multiply perfect numbers. We
defined multiply perfect numbers in Definition [5| The smallest ten multiply
perfect numbers are 1, 6, 28, 120, 496, 672, 8128, 30240, 32760, and 523776.
Of this list, 1 is 1-perfect, 6, 28, 496, and 8128 are 2-perfect, 120, 672, and
523776 are 3-perfect, and 30240 and 32760 are 4-perfect ([11]). Interest-
ingly, of the more than 5,000 known multiply perfect numbers the only odd

one that has been found is 1, which is the only 1-perfect number ([11]).
Theorem 6 (The Only 1-Perfect) The only I-perfect number is 1.

Not only are odd 2-perfect numbers incredibly elusive, but odd multiply per-
fect numbers aside from 1 are conjectured to be nonexistent as well, leading

us to Conjecture 1| which is common among number theorists.
Conjecture 1 The only odd multiply perfect number is 1.

The behavior of multiply perfect numbers, and specifically 3-perfect num-

bers, has direct implications on the odd perfect number problem. Theorem [7]
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1s well-known, easy to prove, and given in [4]].
Theorem 7 An odd number N is 2-perfect if and only if 2N is 3-perfect.
Not too much effort is required to generalize Theorem [7]into Theorem [§]

Theorem 8 Given an n-perfect number M, if n ¥ M then nM is a o(n)-perfect

number.

Unlike Theorem [7] there are some known examples of Theorem [§] in ac-
tion. For example, 459818240 and 51001180160 are two examples of 3-
perfect numbers that are not divisible by 3, meaning that 3 - 459818240 =
1379454720 and 3 - 51001180160 = 153003540480 are both 4-perfect num-
bers since 0(3) =3+ 1 = 4.

Interestingly, [[16] gives somewhat of a reverse perspective of Theorem
as Theorem [9] where if we find a deficient number that satisfies a certain

condition we can multiply it with 5 to get an odd perfect number.
Theorem 9 If I(n) = % for some n € N, then Sn is an odd 2-perfect number.

Note, as Judy A. Holdener does in [16] that Theorem [9] does not give a re-
striction for the existence of odd perfect numbers but rather provides a way
to generate them. A related restriction for the existence of an odd perfect

number that was proven by Holdener in [[16] is given as Theorem [I0}

Theorem 10 There exists an odd perfect number if and only if there exists

p,n,a € Nsuch that p = a =1 mod 4 where p is a prime, p 1 n, and

2p%(p—1
In) = —iag’_ 1).
Holdener’s theorem stands out among the many other proofs surrounding odd
perfect numbers because, similar to Theorem [/ it successfully makes the

existence of an odd perfect number dependent upon the existence of another

number with special properties.
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Another interesting note on Theorem [/| is the apparent finiteness of n-
perfect numbers for each n > 2. Conjecture [2[ is common in the literature

behind multiply perfect numbers.

Conjecture 2 There are infinitely many 2-perfect numbers but there are finitely

many n-perfect numbers for each n > 2.

There are six known 3-perfect numbers and these are generally believed to
be all of the triperfects that exist. All six of the triperfects have been known
since 1643 ([4]). A way to find all six of the triperfects is to use guess and
check by considering numbers of the form 2 M where M is odd and factoring

0 (24) = 29*1 — 1 for a < 14 as suggested in [4]. The six triperfects are

120=2%-3-5
672=2%-3.7
523776 =2°-3-11-31
459818240 =2%.5.7-19-37-73
1476304896 = 2'%.3.11-43.127

51001180160 = 2'*.5.7.19.31-151.

The existence of an odd 2-perfect number suggests that a seventh triperfect
number 7 exists such that 2 || T. The smallest power of 2 that divides any of

the known six triperfect numbers is 2° = 8.

Forms of Perfect Numbers

A common approach to the odd perfect number problem has been to write
theorems regarding the form of an OPN or some part of it. For example, [15]]
gives a theorem from French mathematician Jacques Touchard, which we

give as Theorem [T 1]
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Theorem 11 Any odd perfect number must have the form 12m+1 or 36m+9

for some m € N.

It has been well-known for a long time that an odd perfect number must be of
the form 4m + 1, which follows directly from Theorem 13| Another result on

the form of an odd perfect number is given in Theorem[[2]which is from [25].
Theorem 12 There are no odd perfect numbers of the form a* where a € N.

I have done some of my own research pertaining to forms of odd multiply
perfect numbers which we will discuss in the Original Work section of this
thesis.

Euler proved the equivalent of Theorem 13|as given in [9]].

Theorem 13 If an odd perfect number N exists then it is of the form N =

p*- s> where p=a=1 mod 4, pis prime, and gcd(p, s) = 1.

In this representation of N’s form, p is commonly referred to as the ‘special
prime’, as it is in [4]. For my research of studying the forms of odd multiply
perfect numbers aside from 2-perfects, I generally refer to any prime that is
raised to an odd power in the prime decomposition of an odd multiply perfect
number as a ‘special prime.’

There are a lot of obscure results for odd perfect numbers that have to do
with placing bounds on the largest, smallest, second largest, etc. primes in
the prime decomposition of an odd perfect number. For example, Theorem 4

in [4] is given as Theorem[I4]
Theorem 14 If p is the special prime in an odd perfect number, then o(p +
1)<3(p-1).

Further, the main theorem in [[12], which we give as Theorem[I5] pertains to

the exponents of an odd perfect number and its smallest prime.
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Theorem 15 Let N be an odd perfect number such that if p® || N and p is
not the special prime then either 3 | (a+ 1) or 5 | (a + 1). The smallest prime

factor of N belongs to the range 108 < p < 10109,

While they are worth noting, I doubt that theorems such as Theorems
and[I5]will have much weight in the final solution as to whether or not an odd
perfect number exists. As William Dunham reflects in [9] on the result that
“the third largest prime factor of an odd perfect number of an odd perfect
number must exceed one hundred,” this result “is especially bizarre, for it
tells us something specific about the third largest factor of what could well
be a nonexistent entity. This is a bit like knowing the tooth fairy’s cousin’s
middle name.”

While the form of odd perfect numbers is often described using modular-
ities (which is defined in Definition [10), the form for even perfect numbers
is comparably tight and well-established. Euclid proved that if 27 — 1 is
prime then 27~!(2” — 1) is an even perfect number, Euler proved that all even
perfect numbers are of Euclid’s form, and Italian mathematician Cataldi ob-
served that if p is not prime then 27 — 1 is not prime giving us Theorem

from [7].

Theorem 16 All even perfect numbers are equal to 2P~ (2P — 1) for some

prime p where 2P — 1 is prime.

A prime of the form 2” —1 is named a Mersenne prime after Marin Mersenne,
who, alongside other famous mathematicians such as Fermat, St. Croix,
Frenicle, and Descartes, studied multiply perfect numbers in the mid-17th
century ([[/]). By Theorem [16| there is exactly one even perfect number for
every Mersenne prime and vice versa.

Comparing the form of an odd 2-perfect number given in Theorem

16



with that of an even 2-perfect number given in Theorem (16| highlights just
how well understood even perfects are vs. odd perfects. For even perfects
we have an equation and we know exactly when that equation holds. For
odd perfects we have a form that is loosely defined by the modularities of a

special prime and its prime power.
Mersenne Primes

There are currently 52 known even perfect numbers. The largest one was dis-
covered in October 2024 by Luke Durant with the Great Internet Mersenne
Prime Search (GIMPS) and has upwards of 82,000,000 digits as stated in [19].
While GIMPS is more focused on finding Mersenne primes than perfect
numbers, the one-to-one relationship between them means that every new
Mersenne prime yields a new even perfect number. The 18 largest and most
recently discovered perfect numbers have been discovered by GIMPS since
1996.

Aside from their close association with perfect numbers, Mersenne primes
are special in other ways. Currently, eight of the ten largest known primes
are Mersenne primes as listed in [24]. As Ray Candlish summarizes in [2]],
it has been well known for a long time that every even perfect number is a

triangular number (defined in Definition 1 1)), which we give as Theorem
Theorem 17 Every even perfect number is a triangular number.
Candlish also gives the formula for Theorem [I§]in [2].

Theorem 18 Givenne N, 1+2+3+...+n = %n(n + 1), so every triangular

number is of this form.

Theorem [I7] is incredibly easy to prove as, by observation of Theorem [16]

every even perfect number is equal to %2” (27 — 1) for some prime p meaning
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that n = 27 — 1 in the form for triangular numbers in Theorem 18, While the
overlap between triangular numbers and even perfect numbers is interesting,
triangular perfect numbers don’t seem to have any significant connections or

implications for odd perfect numbers or multiply perfect numbers.

Super Perfect Numbers

In addition to primitive abundant numbers, multiply perfect numbers, spoof
perfect numbers, and triangular numbers, yet another group of numbers that
shows up in our discussion is the super perfects. We define super perfects in

Definition

Definition 14 (Super perfects) A positive integer n is a super perfect num-

ber if and only if o(o(n)) = 2n.

According to [3], “the even super perfects have been completely classified,
but it is not known if any odd super perfects exist,” showing that, once again,
even examples of these numbers are easy to find, but odd examples remain

an enigma. We get Theorem [19|from [28]].

Theorem 19 An even super perfect number n is equal to 2P~" where 2P — 1

is a Mersenne prime.

Similarly to even perfect numbers, even super perfect numbers have a one-to-
one relationship with Mersenne primes, which means that there are 52 known
super perfects.

We define a further generalization of super perfects in Definition the

(m, k)-perfect numbers.

Definition 15 ((m, k)-perfect numbers) A positive integer nis an (m, k)-perfect

number if and only if o™ (n) = kn.
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Wolfram’s page on (m, k)-perfects tells us that there are no even (m, 2)-perfect
numbers for m > 3 in [28]]. Wolfram also cites J. McCranie on his computa-
tional result that there are no (m, 2)-perfect numbers less than 4.29 - 10° for

any m > 3 in [28]].
A Note on Notation and Conjectures

The author of a work in mathematics is able to define notation however
they wish, however it is good practice to stick to common and universally-
recognized notation when possible. For the purposes of this thesis I have
denoted the sum of divisors function as o and the abundancy index as I,
which is how these two functions are most often referred to in mathematical
literature. Another reasonably common way to denote both of these functions

is with the sum of positive divisors function defined in Definition [I6]

Definition 16 Define the function o, for z € C so that

oin)= ) d°

din

forn e N.

Note that, given n € N, oy(n) gives the number of divisors of n, ooy = o,
and o_; = I. While the number of divisors function isn’t as relevant to our
investigation of perfect numbers and related topics, it is an important function
in number theory and it is cool to see how all three of these functions are
related. Samuel J. Dittmer makes use of this notation in [8]].

In addition to notation, another area of mathematics that is allowed to be
subjective is conjectures. ‘Conjecture’ is just a fancy word for ‘guess.’ It
is best practice for mathematicians to only form conjectures that they be-
lieve to be true, but even the best guided conjectures have the potential to be

false until proven true. As an example of an untrue conjecture, the last digit
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of the even perfects was at one time believed to alternate between 6 and 8
([71). This conjecture was based on observation of the first four even per-
fect numbers, 6, 28, 496, and 8128, which have been recognized as perfect
since at least 100 A.D. ([7]]). The fifth and sixth even perfects, 33550336 and
8589869056, break this pattern, proving the conjecture false. However, it is
true and proven that every even perfect number ends in either a 6 or an 8. We
keep the potential wrongness of any statement that has not been rigorously

proven in mind as we proceed.

Notes from Dr. Vaaler

Dr. Jeff Vaaler, emeritus professor of mathematics who I met at the ONTD
2023 conference (see appendix), drew my attention to Theorem 323 in [[13]],

which is given here as Theorem [20]

Theorem 20 Where e = 2.71828... is Euler’s number and y = 0.57721566...

is the Euler-Mascheroni constant, we have that

lim su _am
pnloglogn B

Full understanding of Theorem [20] and lim sup (though we defined lim sup
more formally in Definition[I2)) is out of the scope of this thesis paper, but it

essentially means that the constant e gives an upper bound for the expression

o(n)
nloglogn

and e” is smaller than any other upper bound that can be found for this
expression. Theorem [20]is intriguing and somewhat surprising as it bounds
o, a function which on first impressions seems unpredictable and able to be
arbitrarily large.

Another theorem in [[13]] that caught my attention is Theorem 324, which

we give as Theorem [21]

Theorem 21 The average order of o(n) is %ﬂzn.
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Theorem [21|means that, as n approaches infinity, o(n) is on average equal to

%ﬂzn. Of particular relevance is Corollary|l, which follows from Theorem

Corollary 1 The average value of I(n) is %2. That is

lim N~ i AN L ) T 1644934067
1m = 11m — = = — = 1.
x2 ¢ 6

Corollary |1/ fascinates me. The abundancy index I seems hard to predict, yet
we know what its average is across all the positive integers by Corollary
Even stranger, this average value is defined in terms of &, mathematics’ most
famous irrational number. Further, Vn € N, I(n) € Q so why is the average of

I an element of Q’?

Conclusion

When studying perfect numbers, multiply perfect numbers, primitive abun-
dant numbers, and super perfect numbers there is a common motif. Even ex-
amples of these numbers are easy to find a formula for or at least are plentiful
while odd ones seems sporadic or non-existent. The frustrating thing about
odd perfect numbers, multiply perfect numbers, and super perfect numbers
is that we have as of yet been unable to find any odd examples yet proving
that odd solutions to these problems do not exist seems to be an almost insur-
mountable problem. Sylvester compared the odd perfect number problem to
the quadrature of the circle” also known as squaring the circle ([[7]). Squar-
ing the circle is a geometry problem that originally interested the ancient
Greeks, but has since been proven to be impossible to solve and has become
an analogy for an impossible problem. Regardless of whether or the the odd
perfect number problem is possible to solve, we proceed to the Original Work

section.
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Original Work

My original work on the odd perfect number problem can largely be split into
three research categories: finding non-divisors of odd multiply perfect num-
bers, completing computations related to my study using Python code that I
wrote, and studying the forms of odd multiply perfect numbers. My work
has manifested itself as 6 presentations, 4 songs written for and performed
at my presentations, and 2 papers submitted for publication. Summaries and
descriptions of my presentations and papers can be found in the Appendices
alongside the lyrics to my songs. In this section I will be discussing the the-

orems, proofs, and conjectures that have emerged from my original work.

Generalization of Sylvester’s Proof that an Odd Perfect Number is not Divisi-
ble by 105

My research with odd perfect numbers began by looking at Sylvester’s Proof
that an odd perfect number is not divisible by 105 as given in Theorem 22]

from [9].
Theorem 22 An odd perfect number is not divisible by 105.

I first encountered Theorem [22] in Winter term 2022 as part of a research
project for HNR 276, Honors Mathematics. The number 105 seemed oddly
specific to me and I asked the question, are there any other positive integers
that can be proven not to divide an odd perfect number?

It turns out that there are! To start, Theorem [23] is well-known, easy to

prove, and given in [29].
Theorem 23 Every multiple of an abundant number is abundant.

Recall that abundant numbers are defined in Definition [6l From Theorem 23]

follows Corollary [2]
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Corollary 2 A perfect number is not divisible by any abundant number.

So abundant numbers are the trivial OPN non-divisors. However, 105 is not

abundant. The abundancy of 105 = 3 -5 - 7 is 1(105) = Z2FED) = 468 -

% ~ 1.82857 < 2. In my research I sought to find other non-abundant non-
divisors of odd perfect numbers.

I completed an independent study during Spring 2022 to continue my re-
search. As part of the independent study I wrote [29]. At the end of the
independent study, I presented at Western Oregon University’s Academic Ex-
cellence Showcase and submitted my paper for consideration by the Pi Mu
Epsilon Journal. At the time that I presented on my research I had discovered
17 non-abundant OPN non-divisors aside from 105. By the time I submitted
my paper, | had found a total of 109 non-divisors aside from 105. My paper
was fittingly called, “Generalization of Sylvester’s Proof that an Odd Perfect
Number is not Divisible by 105.” In [29], I proved that an odd perfect number
cannot be divisible by 2145 (the smallest non-divisor aside from 105) as an

example of my generalization. Here I will prove Theorem [24] as an example

because 111,111 is my favorite non-divisor that I found.
Theorem 24 An odd perfect number is not divisible by 111,111.

Proor: We proceed by way of contradiction. Assume that N is an odd perfect
number and 111111 | N. Then, the prime factorization of N will be of the

form N = 3k .7k 11k . 13k . 37Ks p’éﬁ Gt pl,i" where every base is a distinct
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prime and every k; is greater than 0. Observe, by Lemma

oG o) 115 o(13%) o(37%) o(ps') o(p.)
T3k 7k q1k 13k 37k peke T p ok

:(1+l+...+i)-(l+l+...+i)-(1+i+...+i)
3 3k 7 7k 11 11k
-(1+L+...+L)~(1+i+...+ : )
13 13k 37 37ks

1 1 1 1
Al +—+ ...+ P L+ —+ .+ -
Pe Pe® Pn Pn'"

Since N is an perfect number, o(N) = 2N, and since N is odd, o(N) is

divisible by 2 but not 4. Note that, if ky, k;, or k3 is equal to one, then

1+1+ +1 _4
3 s 3k1 _3
1 1 8
l+=+..+—0—|=2
7 7k 7
1 1 12
l+—+. 4+ —|=—,
11 114 11

which would imply that o-(N) is divisible by 4. Thus, ki, k;, and k3 are at
least 2.
Observe,

2:@2 1+l+i . 1+l+i . 1+i+i . 1+i . 1+i
N 3 32 7 77 11 11 13 37

13 57 133 14 38 52430196

=939 121 1337 25666641
which is a contradiction. Thus, an odd perfect number is not divisible by
111,111. QED
Note that the proof for Theorem [24] given here follows the structure of
Sylvester’s proof of Theorem[22]and the proof that I gave to show that an odd

perfect number cannot be divisible by 2145 in [29]]. The 109 non-divisors that
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I found are given as follows from [29].

3-5-11: p, where p is prime and 13 < p < 19
3-5-11-23-29 = 110055

3-5-13-17-19 = 62985

3.7-11-13 - p, where p is prime and 17 < p < 179
3-7-11-19-23 =100947

3-7-11-23-31-43 =7082229

3-11-13-17-19-23-29 =92424189
3-13-17-19-23-29-31-37- p, where p is prime and 41 < p < 389
3-13-19-23-29-31-37-41-43-47 = 46974009365049

5:7-11-13-17-19-23-29 .31 = 33426748355

I found these non-divisors with the help of a spreadsheet.

I end [29] with a discussion of primitive abundant numbers, which I de-
fined slightly differently than in Definition [/} I defined primitive abundant
numbers as either perfect or abundant numbers that have no perfect or abun-

dant proper divisors. In [29], I end with Conjecture

Conjecture 3 There are infinitely many distinct numbers that can be proven
not to divide an odd perfect number using a generalization of Sylvester’s
proof.

A Note on Erdés

Paul Erdds was an amazing mathematician and a prolific writer of mathe-
matical published work. During his life he published around 1,500 papers

(a number which remains unsurpassed by any other mathematician) and nu-

merous books. While writing [29] I was trying to determine if I could prove
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Conjecture [3| and I realized that I could do so if it had already been proven
that there are infinitely many odd primitive abundant numbers. I ran across a
book on number theory coauthored by Erdds cited as [26], which, on p.244
listed as an exercise to the reader, “Prove that there are infinitely many odd
primitive abundant numbers.” This gave me a moment of hope that it had
been proven as textbook writers don’t usually leave unsolved problems as
exercises for the reader. Alas, whether or not there are infinitely many odd
primitive abundant numbers remains an open question. Erdds is just the kind
of person who would leave such a problem to an unsuspecting undergraduate

who is just starting out in number theory.

Computational Response to Vaaler

Dr. Vaaler defined the function p : N — Q in [27], which, for our purposes,

we define as in Definition 17
Definition 17 Define p so that, for n € N, p(n) = I(n) — [ I(n)].

In [27], Vaaler posed the question, “does the limit

N
Jlim N7 cos2np(n) (4)
n=1
exist? And if [the limit shown above] does exist, what is the value of the
limit?”
I wrote some Python code to compute equation 4] along with some other

limits that came to my attention. My code generated the following graph.
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Observation of this graph and the table of values generated by my code sug-

gests that the limit as N — oo exists for each of these functions and leads me
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to propose the following estimates.

N
Jim N') cos2np(n) ~ 0.113 (5)
n=1
N
. -1 ~ N
lim N Z_; 5(n) ~ 0.376 (6)
N
Jim N1 M~ 152 (7)
—00 n=1
& o)
. —1 ™
lim N Z:; — ~ 1.64 (8)
From Corollary |I| we have that
N 2
fim N1 ST W _ T 644934067...
N—>oo pr n 6

which is accurate up to three decimal places with

10000 O'(I’l)
100007! Z — ~ 1.6444958900708022
n=1

and supports the estimation in equation [§

Forms of Odd Multiply Perfect Numbers

During the Summer of 2023 I began looking at possible forms that odd n-
perfect numbers for values of n aside from 2 could have, and I started to
notice some interesting patterns. I wrote my findings on this topic as a paper
which has been submitted for publication and which I cite as [14].

In [14], I prove Lemma [5|and use it to define the function v as in Defini-

tion [L8l

Lemma 5 For every n € N, there exists a unique k € Zsq such thatn = 2% -1

mod 2k+1,

Definition 18 Let the function v : N — Zs be defined as v(n) = j where j is

the unique nonnegative integer such thatn =2/ — 1 mod 2/*!.
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The theorem that I am most proud of in [[14] is Lemma[f] Proving Lemmal6|
was the first time that I had the opportunity to use an inductive proof outside

of a classroom setting.

Lemma 6 Let p € N be odd and let j € N. Then, Vn =2/ —1 mod 2/*!,
Pl .+ p+ 1 =20 mod 2V
Importantly, Corollary [3|]follows from Lemma [6]

Corollary 3 Let p be an odd prime and let n € N be odd. Then o(p") =

u(p)rum)=1 i q pulp)+vln)

Using Corollary 3| and other related corollaries and lemmas, I was able to

prove Theorem [25|and Theorem [26, which are given in [14].

Theorem 25 Given an odd 4k-perfect number M where k is odd, M is of one
of the following three forms where each p;; is a distinct odd prime that does

not divide s, p;j = a;j = 2i — 1 mod 2™, and s is odd.

M = p; - 2 - s? 9)
M=py@-s (10)
M = py“t - s (11)

Theorem 26 Given an odd 8k-perfect number M where k is odd, M is of one

of the following six forms where each p;; is a distinct odd prime that does not
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divide s, pi;; = a;; =2 — 1 mod 2!, and s is odd.

M =pp® - p®? - i3 st (12)
M= py™ - py™ s (13)
M =py™ - pp™ -5 (14)
M=p,® s (15)
M = py®@ -5 (16)
M= py @ . s (17)

I also gave a theorem in [[14] which lists all 13 possible forms of a 16k-perfect
number with odd k.
The other part of [14] that I am very proud of is the Final Remarks section.

In this section I begin by defining the function p as in Definition

Definition 19 Let p be defined as, for t € Zs,

J
o(t) = {{(nl, k), (n2,k2),s .oor (1 K j)} | ni, k; € N, each n; is distinct, Z nik; = z} .

i=1

Given t € Zs, p(t) is my way of expressing the set of integer partitions of 7.
An integer partition is a collection of positive integers that can be summed
together to equal a given integer. For example, the five distinct integer parti-
tions of 4 are 4, 3+1, 242, 2+1+1, and 1+1+1+1, the seven distinct integer
partitions of 5 are 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, and 1+1+1+1+1,
etc. My way of expressing an integer partition is as a set of tuples (n, k)
where each n is a positive integer that appears in the partition and & is the
number of times it appears, where each n is distinct. For example, the five
distinct elements of p(4) aka the integer partitions of 4, given in the same
order as before, are {(4, 1)}, {(3, 1), (1, 1)}, {(2,2)}, {(2,1),(1,2)}, and {(1,4)},

the seven distinct elements of p(5) aka the integer partitions of 5 are {(5, 1)},
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{4, 1,1, D} {G, 1), (2, D} G, D, (1,2}, {(2,2), (1, D}, {2, 1),(1,3)}, and
{(1,5)}, etc. Note that p(0) equals the empty set.

I then define the function w as in Definition

Definition 20 Define w : Z>y — N so that, for t € Zx

n+k-1
w(t) = Z ]_[ ( . )
Aep(t) (n,k)eA

Using the w-function defined as in Definition[20] I proved Theorem[27]in [14].

Theorem 27 A 2'k-perfect number M with odd k and t € Z( has w(t) possi-

ble forms.

I calculated w(n) from n = 0 to 11 and I got the following sequence of

values, as given in [14].
1,1,3,6,13,24,48, 86, 160,282, 500, 859, ...

Interestingly, this sequence aligns with OEIS A000219 ([21]). The On-line
Encyclopedia of Integer Sequences is a searchable catalog of sequences that
have been of interest to a mathematician at one time or another. It is valuable
because, when a mathematician comes across a sequence, they can easily and
quickly check if the sequence has a known equation, has been studied, or has
appeard in any literature by searching for it within OEIS.

OEIS A000219 is the number of planar partitions of n. A planar partition
of n 1s a two dimensional partition of n, where the rows and columns decrease

from left to right and top to bottom. For example,

321 .33 .111.63 .9 .4
I 1 .2 111 . . .4
1 o1 11T 1 . . o1
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represent six valid planar partitions of 9 since

9=CB+1+D+2+D+()
—(B+2+1)+3
=(1+1+DH)+0+1+D)+A+1+1)
=©)+03)
=)

=@4+4+1)

whereas three invalid examples of planar partitions are

121 .33 . 111

3 1 .2 111

1 . I .1 2
because not all rows and columns decrease from left to right and top to bot-
tom.

Noticing that my sequence aligned with OEIS /A000219 led me to Conjec-
ture [4] ([14]).

Conjecture 4 The number of planar partitions of n € Zs is equal to w(n).

I tried to prove Conjecture 4| by finding a surjective mapping from the set of
planar partitions of n € Zs( to each possible form of a 2"k-perfect number
with odd k, but was not successful. I have come to the conclusion that proving

Conjecture []is out of the scope of my research.

Songs and Presentations

I completed six presentations on OPNs and MPNs. A summary and abstract
of each presentation is given in the appendix. I wrote a total of four songs

on perfect numbers which I performed during my presentations. I found that
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breaking into song in the middle or at the end of my talks was a good way
to engage my audience, make the subject matter more memorable, and make
my talks more exciting. My audiences responded well to the songs and my
musical interludes were always met by applause. The lyrics to each of my

songs can also be found in the appendix.
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Final Remarks

For my first paper, cited as [29] and published in Fall 2022, I won the Richard
V. Andree Award, which is “given annually to the authors of the papers,
written by undergraduate students, that have been judged by the officers and
councilors of Pi Mu Epsilon to be the best that have appeared in the Pi Mu
Epsilon Journal in the past year” ([22]).

My second paper has been submitted for publication and is awaiting a
decision from the editor. I had intended to write a third paper on possible
non-divisors of odd triperfect numbers, but found that that had already been
covered by [17]. I also considered creating a database of known multiply
perfect numbers but found that that had been done by [11]].

The odd perfect number problem remains to be solved. New advance-
ments on the problem are made regularly and I am hopeful that it will be
solved in my lifetime. I also hope that the contributions that I have made to
the problem will be a part of the solution for the OPN problem, but I know
that this is unlikely. There are many approaches that number theorists have
taken to the OPN problem and I have only been able to study a few.

In addition to OPNs, we looked at multiply perfect numbers, the sigma
function and the abundancy index, primitive abundant numbers, super per-
fects, and spoof perfects. For many of these numbers, studying even exam-
ples is easier than studying odd examples and odd instances tend to have
a lot more open questions surrounding them. Similar to the OPN problem,
it will be interesting to see what advancements in our understanding of the
other abundancy-defined numbers will emerge in coming years. I expect that

studying these other numbers is how the OPN problem will be solved.
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Appendix

Songs
Song #1 “The Perfect Number Song”

Originally performed at AES 2022. Note that this song is out of date, as there
are now 52 known perfect numbers.

Let me sing you a song about... Perfect Numbers,
Equal to the sum of their... proper factors.

Even ones we know exist
We’ve found 51 including 6, 28, and 496,
And the largest one has over 49 million digits.

Odd perfect numbers are harder to find

Mathematicians have been searching for a very long time
Can we find an odd perfect number?

Or at least prove their nonexistence forever?

We must learn from our mistakes.

Learn from the wrong paths we may take.
And someday, someone, will solve...

The mystery of the odd perfect number.

Song #2 “Odd Perfect Numbers”

Originally performed as the finale of AES 2022.

Odd perfect numbers, a passion of mine.
Odd perfect numbers, so hard to find.

Now we know a bunch of numbers you’re not divisible by
Including, but not limited to 105.

I’m almost certain you don’t exist, but I wish I knew why.
Odd perfect numbers, so hard to find.

Odd perfect numbers,

We’ve searched high and we’ve searched low,
And now we know that there are none below
Ten to the 2000th power

And that’s a big number.

Odd perfect numbers, so hard to find.

Song #3 “Multiply Perfect”

Originally performed at AES 2024

Multiply perfect...

Divisor of the sum of your factors

We want to prove all the conjectures
But you’re just a number, just an integer
Just a natural

Everyone wants to find you
Everyone wants your primes
Everyone wants your form
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They want to know you, to study you
You are their muse

"’

”I’m not so special!” you declare.

”My abundancy is an integer, but that’s all that’s there.

Why must my identity be based on something that’s just part of me.
Why do I have to justify the reason that I am me.”

One is the only odd one that we know

And one seems to like being alone

The search for odd 2-perfects has been big and in vain.

The search for even 2-perfects seems to leave room for gain.

Triperfects, or 3-perfect if you prefer,

Six are known

But are they alone?

If they are, there are no OPNS.

And that would bring that question to an end.

Multiply perfect...

Divisor of the sum of your factors

So many conjectures

But you’re just a number, just an integer,
Just a natural

Song #4 “Multiply Perfect (ver. 2)”

Originally performed at JMM 2025

Multiply perfect...

Divisor of the sum of your factors

Your abundancy is whole

But you’re just a number, just an integer
Just a natural

Everyone wants to find you
Everyone wants your primes
Everyone wants your form

They want to know you, to study you
You are their muse

One is the only odd one that we know

And one seems to like being alone

The search for odd perfects has been big and in vain

The search for even perfects seems to leave room for gain

Triperfect, or 3-perfect if you prefer,

Six are known but are they alone?

Do they have any other friends?

One day we’ll bring this question to an end

Multiply perfect...

Divisor of the sum of your factors

So many conjectures

But you’re just a number, just an integer
Just a natural
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Summary of Presentations

Following is a list of the presentations I have given on odd perfect numbers

and related topics in chronological order.

(Western Oregon University Academic Excellence Showcase 2022) “The
Mathematical Mystery of Odd Perfect Numbers,” May 26, 2022.

The information in this presentation is covered and then some by my first
paper, published Fall 2022. The main result is generalizing Sylvester’s 105
proof and finding a bunch of other ‘odd perfect number non-divisibility num-
bers, as I call them.

Abstract. Perfect numbers are numbers that are equal to the sum of their
proper factors (for example, 28 is a perfect number because 28 = 1 + 2 +
4 + 7 + 14). We will discuss some of the characteristics of perfect numbers,
specifically those that relate to the open question of the existence of odd
perfect numbers. This project expands upon previous results regarding the

divisibility of odd perfect numbers.

(Oregon Number Theory Days hosted by Oregon State University 2023)
“How to find Integers that Cannot Divide Elusive Odd Perfect Numbers:
Generalizing Sylvester’s Proof,” February 18, 2023.

This presentation covered most of the same information as my AES 2022
presentation, except by this point my paper had been finalized and published
and I had found even more non-divisibility numbers. At this conference I met
Dr. Jeff v, emeritus professor of mathematics at OSU, who I sent a draft copy
of my paper to over email. He responded with four pages of notes and a
question which he posed to me in response to my paper. I responded to his
notes and attempted to answer his question to the best of my ability during

summer 2023.
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Abstract. Odd perfect numbers have been of interest to mathematicians
for millennia. While they are generally believed not to exist, no one has been
able to prove their nonexistence. Many discoveries have been made regarding
the characteristics of odd perfect numbers, including James Sylvester’s 1888
proof that no odd perfect number is divisible by 105. We will discuss a
generalization of Sylvester’s proof that allows us to prove that 2145 and at
least 108 other integers aside from 105 are impossible odd perfect number

divisors.

(Northwest Undergraduate Mathematics Symposium 2023, held virtu-
ally) “How to find Integers that Cannot Divide Odd Perfect Numbers
using a Generalization of Sylvester’s Proof,” November 11, 2023.

This was a repeat of information from my last two presentations. In all
three presentations I sang “The Perfect Numbers Song” and “Odd Perfect
Numbers.” The songs got wonderful responses in all my presentations. All
the mathematicians present loved to hear some number theory set to music,
which does not happen very often.

Abstract. A widely known and thought about open question in number
theory is whether or not an odd perfect number, that is an odd positive in-
teger equal to the sum of its proper divisors, exists. In 1888, James Joseph
Sylvester proved that such a number cannot be divisible by 105. This pre-
sentation includes an extension of Sylvester’s proof discovered recently by
the speaker and lists more integers that can be proven not to divide an odd

perfect number. We will also discuss how to find such integers.

(BOT Meeting) “Divisibility Conditions for Odd Perfect Numbers,”’ April
16, 2024.

I was asked to give a five minute presentation before WOU’s Board of
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Trustees demonstrating the research I have done. At the end I was asked
to perform one of my songs. I sang “Odd Perfect Numbers” from memory,
without practice. It was fun and well-received.

Abstract. No abstract.

(Western Oregon University Academic Excellence Showcase 2024) “The
Mathematical Mystery of Odd (Tri)Perfect Numbers,” May 30, 2024.

In this presentation I dropped new research which I completed for the
event. I found an odd triperfect number non-divisibility number.

Abstract. This is a continuation of the AES 2022 presentation “The Math-

29

ematical Mystery of Odd Perfect Numbers.” The first presentation shared
a generalization of J.J. Sylvester’s 1888 proof that an odd perfect number,
should one exist, cannot be divisible by 105. Sylvester’s proof had not been
generalized prior to this point. This second presentation will look at ex-

tending Sylvester’s proof to find integers that cannot divide odd triperfect

numbers. This is a new result in number theory.

(Joint Mathematics Meeting 2025) “Odd Perfects, Multiply Perfects, and
Non-Divisors, oh my! An Exploration of the Odd Perfect Number Prob-
lem,” January 9, 2025.

I gave this presentation at by far the largest conference that I have ever
been to. In my presentation I discuss non-divisors of odd 2-perfect, 3-perfect,
and 4-perfect numbers. I also shared some new conjectures about the forms
of odd multiply perfect numbers. I referenced the work of Sylvester and Euler.

Abstract. Perfect numbers, and the broader collection of multiply perfect
numbers are a much studied yet little understood facet of number theory. The
infamous OPN problem can be simply stated but has proven to be one of the

hardest problems in number theory to solve. The question behind it is: do

42



odd perfect numbers exist? Of the 51 known perfect numbers (the smallest

82589932 5 (282589932 _ 1))) all are even. There

being 6 and the largest being
is only one out of the known 5932 multiply perfect numbers that is odd.
Most number theorists conjecture that there is one and only one odd multiply
perfect number but there are infinitely many even multiply perfect numbers.
In 1888, James Joseph Sylvester proved that if an OPN exists, then it cannot
be divisible by 105. We extend Sylvester’s result to other odd multiply perfect
numbers, illuminate other values aside from 105 that can be proven to be an

odd perfect number non-divisor, and attempt to shed some new light on this

very old problem.
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Summary of Papers

“Generalization of Sylvester’s Proof that an Odd Perfect Number is not
Divisible by 105,” Pi Mu Epsilon Journal, Vol. 15, No. 7, (2022).

With this paper I won the 2022 Richard V. Andree Award, which is “given
annually to the authors of the papers, written by undergraduate students, that
have been judged by the officers and councilors of Pi Mu Epsilon to be the
best that have appeared in the Pi Mu Epsilon Journal in the past year” ([22)]).
I completed this paper under the edit suggestions and research guidance of
Dr. Leanne Merrill during an independent study completed in Winter 2022.

Abstract. Odd perfect numbers have been of interest to mathematicians
for millennia. Many discoveries have been made regarding the characteristics
of odd perfect numbers, including James Sylvester’s 1888 proof that no odd
perfect number is divisible by 105. This article, which generalizes Sylvester’s
proof, proves that an odd perfect number is also not divisible by 2145 and

discusses the extension of this result to at least 108 other impossible divisors.

“Forms of Odd Multiply Perfect Numbers,” unpublished, (2025).

I completed this paper under the guidance of Dr. Cheryl Beaver during
an independent study completed in Winter 2025.

Abstract. The form of an odd 2-perfect number was established by Euler
in the 18th century to be N = p®- s> where p is prime, p =a =1 mod 4, and
gcd(p, s) = 1. We will prove that odd 4-perfect numbers, 8-perfect numbers,
and 16-perfect numbers have exactly 3, 6, and 13 possible forms, respec-
tively. We will give these possible forms and provide an equation which we

conjecture to count the number of possible forms of other odd MPNss.

44



	Introduction and Background
	Theoretical Frameworks
	Literature Review
	Spoof Perfect Numbers
	Primitive Abundant Numbers
	Multiply Perfect Numbers
	Forms of Perfect Numbers
	Mersenne Primes and Triangular Numbers
	Super Perfect Numbers
	A Note on Notation and Conjectures
	Notes from Dr. Vaaler
	Literature Review Conclusion

	Original Work
	Generalization of Sylvester's Proof
	A Note on Erdős
	Computational Response to Vaaler
	Forms of Odd Multiply Perfect Numbers
	Songs and Presentations

	Final Remarks
	References
	Appendix
	Songs
	Summary of Presentations
	Summary of Papers


